Suppr超能文献

WWP1基因缺陷减轻模拟微重力诱导的心脏重塑。

WWP1 Deficiency Alleviates Cardiac Remodeling Induced by Simulated Microgravity.

作者信息

Zhong Guohui, Zhao Dingsheng, Li Jianwei, Liu Zifan, Pan Junjie, Yuan Xinxin, Xing Wenjuan, Zhao Yinglong, Ling Shukuan, Li Yingxian

机构信息

The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.

State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.

出版信息

Front Cell Dev Biol. 2021 Oct 18;9:739944. doi: 10.3389/fcell.2021.739944. eCollection 2021.

Abstract

Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.

摘要

心肌对负荷条件的变化极为敏感;太空飞行期间的微重力会导致心脏重塑和功能下降。目前,微重力诱导心脏重塑的机制仍有待揭示。含WW结构域的E3泛素蛋白连接酶1(WWP1)是通过稳定无序节段极性蛋白2(DVL2)并激活钙调蛋白依赖性蛋白激酶II(CaMKII)/组蛋白脱乙酰酶4(HDAC4)/心肌细胞特异性增强因子2C(MEF2C)轴来促进压力超负荷诱导心脏重塑的重要激活因子。然而,WWP1在微重力诱导的心脏重塑中的作用尚不清楚。本研究的目的是确定WWP1是否也参与微重力引起的心脏重塑的调节。首先,我们使用蛋白质免疫印迹法和免疫组织化学检测了模拟微重力后小鼠和猴子心脏中WWP1和DVL2的表达。其次,将WWP1基因敲除(KO)小鼠和野生型(WT)小鼠进行尾部悬吊(TS)以模拟微重力效应。我们通过组织学分析和超声心动图评估了心脏在形态和功能方面的重塑情况。最后,我们检测了TS后WT和WWP1 KO小鼠心脏中CaMKII和HDAC4的磷酸化水平。结果显示,模拟微重力后小鼠和猴子心脏中WWP1和DVL2的表达均增加。WWP1缺乏减轻了模拟微重力诱导的心脏萎缩和功能下降。组织学分析表明,WWP1基因敲除抑制了尾部悬吊后小鼠单个心肌细胞大小的减小。WWP1基因敲除可抑制模拟微重力诱导的小鼠心脏中DVL2/CaMKII/HDAC4途径的激活。这些结果表明,WWP1是模拟微重力诱导的心脏重塑和功能下降的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6562/8558417/0a67223da627/fcell-09-739944-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验