Chang Wesley, May Richard, Wang Michael, Thorsteinsson Gunnar, Sakamoto Jeff, Marbella Lauren, Steingart Daniel
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
Nat Commun. 2021 Nov 4;12(1):6369. doi: 10.1038/s41467-021-26632-x.
The dynamic behavior of the interface between the lithium metal electrode and a solid-state electrolyte plays a critical role in all-solid-state battery performance. The evolution of this interface throughout cycling involves multiscale mechanical and chemical heterogeneity at the micro- and nano-scale. These features are dependent on operating conditions such as current density and stack pressure. Here we report the coupling of operando acoustic transmission measurements with nuclear magnetic resonance spectroscopy and magnetic resonance imaging to correlate changes in interfacial mechanics (such as contact loss and crack formation) with the growth of lithium microstructures during cell cycling. Together, the techniques reveal the chemo-mechanical behavior that governs lithium metal and LiLaZrO interfacial dynamics at various stack pressure regimes and with voltage polarization.
锂金属电极与固态电解质之间界面的动态行为在全固态电池性能中起着关键作用。在整个循环过程中,该界面的演变涉及微米和纳米尺度上的多尺度机械和化学不均匀性。这些特征取决于诸如电流密度和堆叠压力等操作条件。在此,我们报告了将原位声传输测量与核磁共振光谱和磁共振成像相结合,以关联电池循环过程中界面力学变化(如接触损失和裂纹形成)与锂微观结构生长之间的关系。这些技术共同揭示了在各种堆叠压力条件下以及存在电压极化时,控制锂金属与LiLaZrO界面动力学的化学-力学行为。