Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
Magn Reson Med. 2022 Mar;87(3):1418-1434. doi: 10.1002/mrm.29063. Epub 2021 Nov 4.
To compare different optimization approaches for choosing the spin-lock times (TSLs), in spin-lattice relaxation time in the rotating frame (T ) mapping.
Optimization criteria for TSLs based on Cramér-Rao lower bounds (CRLB) are compared with matched sampling-fitting (MSF) approaches for T mapping on synthetic data, model phantoms, and knee cartilage. The MSF approaches are optimized using robust methods for noisy cost functions. The MSF approaches assume that optimal TSLs depend on the chosen fitting method. An iterative non-linear least squares (NLS) and artificial neural networks (ANN) are tested as two possible T fitting methods for MSF approaches.
All optimized criteria were better than non-optimized ones. However, we observe that a modified CRLB and an MSF based on the mean of the normalized absolute error (MNAE) were more robust optimization approaches, performing well in all tested cases. The optimized TSLs obtained the best performance with synthetic data (3.5-8.0% error), model phantoms (1.5-2.8% error), and healthy volunteers (7.7-21.1% error), showing stable and improved quality results, comparing to non-optimized approaches (4.2-13.3% error on synthetic data, 2.1-6.2% error on model phantoms, 9.8-27.8% error on healthy volunteers).
A modified CRLB and the MSF based on MNAE are robust optimization approaches for choosing TSLs in T mapping. All optimized criteria allowed good results even using rapid scans with two TSLs when a complex-valued fitting is done with iterative NLS or ANN.
比较在旋转框架中自旋-晶格弛豫时间(T )映射中选择自旋锁定时间(TSL)的不同优化方法。
在合成数据、模型体模和膝关节软骨上,将基于克拉美-罗下界(CRLB)的 TSL 优化标准与匹配采样拟合(MSF)方法进行比较。MSF 方法使用针对噪声成本函数的稳健方法进行优化。MSF 方法假设最优 TSL 取决于所选拟合方法。作为 MSF 方法的两种可能 T 拟合方法,测试了迭代非线性最小二乘(NLS)和人工神经网络(ANN)。
所有优化标准均优于非优化标准。然而,我们观察到,改进的 CRLB 和基于归一化绝对误差平均值(MNAE)的 MSF 是更稳健的优化方法,在所有测试情况下都表现良好。优化后的 TSL 在合成数据(3.5-8.0%误差)、模型体模(1.5-2.8%误差)和健康志愿者(7.7-21.1%误差)中获得了最佳性能,与非优化方法相比,结果更稳定且质量更高(在合成数据上的 4.2-13.3%误差,在模型体模上的 2.1-6.2%误差,在健康志愿者上的 9.8-27.8%误差)。
改进的 CRLB 和基于 MNAE 的 MSF 是 T 映射中选择 TSL 的稳健优化方法。即使使用具有两个 TSL 的快速扫描,并使用迭代 NLS 或 ANN 进行复值拟合,所有优化标准都允许获得良好的结果。