Lopez Laura S, Völkner Carsten, Day Philip M, Lewis Chance M, Lewis Chase L, Schneider Dominik, Correa Galvis Viviana, Cruz Jeffrey A, Armbruster Ute, Kramer David M, Kunz Hans-Henning
School of Biological Sciences Washington State University Pullman Washington.
Department of Plant Biochemistry LMU Munich Planegg-Martinsried Germany.
Plant Direct. 2022 Jul 20;6(7):e429. doi: 10.1002/pld3.429. eCollection 2022 Jul.
In nature, plants experience rapid changes in light intensity and quality throughout the day. To maximize growth, they have established molecular mechanisms to optimize photosynthetic output while protecting components of the light-dependent reaction and CO fixation pathways. Plant phenotyping of mutant collections has become a powerful tool to unveil the genetic loci involved in environmental acclimation. Here, we describe the phenotyping of the transfer-DNA (T-DNA) insertion mutant line SALK_008491, previously known as . Growth in a fluctuating light regime caused a loss in growth rate accompanied by a spike in photosystem (PS) II damage and increased non-photochemical quenching (NPQ). Interestingly, an independent null allele did not recapitulate the NPQ phenotype. Through bulk sequencing of a backcrossed segregating F pool, we identified an ~14-kb large deletion on chromosome 3 (Chr3) in SALK_008491 affecting five genes upstream of . Besides , which encodes for a putative plastid Na/H antiporter, the stromal NAD-dependent D-3-phosphoglycerate dehydrogenase 3 () locus was eradicated. Although some changes in the SALK_008491 mutant's photosynthesis can be assigned to the loss of PGDH3, our follow-up studies employing respective single mutants and complementation with overlapping transformation-competent artificial chromosome (TAC) vectors reveal that the exacerbated fluctuating light sensitivity in SALK_008491 mutants result from the simultaneous loss of PGDH3 and NHD1. Altogether, the data obtained from this large deletion-carrying mutant provide new and unintuitive insights into the molecular mechanisms that function to protect the photosynthetic machinery. Moreover, our study renews calls for caution when setting up reverse genetic studies using T-DNA lines. Although second-site insertions, indels, and SNPs have been reported before, large deletion surrounding the insertion site causes yet another problem. Nevertheless, as shown through this research, such unpredictable genetic events following T-DNA mutagenesis can provide unintuitive insights that allow for understanding complex phenomena such as the plant acclimation to dynamic high light stress.
在自然界中,植物在一天中会经历光照强度和质量的快速变化。为了实现生长最大化,它们建立了分子机制,以优化光合产量,同时保护光依赖反应和CO固定途径的组成部分。对突变体库进行植物表型分析已成为揭示参与环境适应性的基因座的有力工具。在这里,我们描述了转移DNA(T-DNA)插入突变体系SALK_008491的表型分析,该突变体先前称为 。在波动光照条件下生长导致生长速率下降,同时伴随着光系统(PS)II损伤加剧和非光化学猝灭(NPQ)增加。有趣的是,一个独立的无效等位基因并未重现NPQ表型。通过对回交分离F群体进行大规模测序,我们在SALK_008491的3号染色体(Chr3)上鉴定出一个约14 kb的大片段缺失,该缺失影响了 上游的五个基因。除了编码假定的质体Na/H反向转运蛋白的 外,基质NAD依赖的D-3-磷酸甘油酸脱氢酶3( )基因座也被消除。尽管SALK_008491突变体光合作用的一些变化可归因于PGDH3的缺失,但我们随后使用各自的单突变体并通过重叠的具备转化能力的人工染色体(TAC)载体进行互补的研究表明,SALK_008491突变体中波动光敏感性加剧是由于PGDH3和NHD1同时缺失所致。总之,从这个携带大片段缺失的突变体获得的数据为保护光合机制的分子机制提供了新的、意想不到的见解。此外,我们的研究再次呼吁在使用T-DNA系进行反向遗传学研究时要谨慎。尽管之前已经报道了第二位点插入、插入缺失和单核苷酸多态性,但插入位点周围的大片段缺失又引发了另一个问题。然而,正如本研究所表明的,T-DNA诱变后这种不可预测的遗传事件可以提供意想不到的见解,从而有助于理解植物对动态高光胁迫的适应等复杂现象。