Suppr超能文献

诊断2019冠状病毒病(COVID-19):基于高效哈里斯鹰优化的模糊K近邻预测方法

Diagnosing Coronavirus Disease 2019 (COVID-19): Efficient Harris Hawks-Inspired Fuzzy K-Nearest Neighbor Prediction Methods.

作者信息

Ye Hua, Wu Peiliang, Zhu Tianru, Xiao Zhongxiang, Zhang Xie, Zheng Long, Zheng Rongwei, Sun Yangjie, Zhou Weilong, Fu Qinlei, Ye Xinxin, Chen Ali, Zheng Shuang, Heidari Ali Asghar, Wang Mingjing, Zhu Jiandong, Chen Huiling, Li Jifa

机构信息

Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical University Yueqing 325600 China.

Department of Pulmonary and Critical Care MedicineThe 1st Affiliated Hospital, Wenzhou Medical University Wenzhou 325000 China.

出版信息

IEEE Access. 2021 Jan 19;9:17787-17802. doi: 10.1109/ACCESS.2021.3052835. eCollection 2021.

Abstract

This study is devoted to proposing a useful intelligent prediction model to distinguish the severity of COVID-19, to provide a more fair and reasonable reference for assisting clinical diagnostic decision-making. Based on patients' necessary information, pre-existing diseases, symptoms, immune indexes, and complications, this article proposes a prediction model using the Harris hawks optimization (HHO) to optimize the Fuzzy K-nearest neighbor (FKNN), which is called HHO-FKNN. This model is utilized to distinguish the severity of COVID-19. In HHO-FKNN, the purpose of introducing HHO is to optimize the FKNN's optimal parameters and feature subsets simultaneously. Also, based on actual COVID-19 data, we conducted a comparative experiment between HHO-FKNN and several well-known machine learning algorithms, which result shows that not only the proposed HHO-FKNN can obtain better classification performance and higher stability on the four indexes but also screen out the key features that distinguish severe COVID-19 from mild COVID-19. Therefore, we can conclude that the proposed HHO-FKNN model is expected to become a useful tool for COVID-19 prediction.

摘要

本研究致力于提出一种有用的智能预测模型,以区分新型冠状病毒肺炎(COVID-19)的严重程度,为协助临床诊断决策提供更公平合理的参考。基于患者的必要信息、既往疾病、症状、免疫指标和并发症,本文提出了一种使用哈里斯鹰优化算法(HHO)优化模糊K近邻算法(FKNN)的预测模型,即HHO-FKNN。该模型用于区分COVID-19的严重程度。在HHO-FKNN中,引入HHO的目的是同时优化FKNN的最优参数和特征子集。此外,基于实际的COVID-19数据,我们在HHO-FKNN与几种著名的机器学习算法之间进行了对比实验,结果表明,所提出的HHO-FKNN不仅在四个指标上能够获得更好的分类性能和更高的稳定性,还筛选出了区分重症COVID-19和轻症COVID-19的关键特征。因此,我们可以得出结论,所提出的HHO-FKNN模型有望成为COVID-19预测的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b448/8545238/c44409b3b2a9/chen1-3052835.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验