Suppr超能文献

MuSA:用于放射基因组学研究中多组学数据集成的图形用户界面。

MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies.

机构信息

IRCCS SDN, Via E. Gianturco, 113, 80143, Naples, Italy.

出版信息

Sci Rep. 2021 Jan 15;11(1):1550. doi: 10.1038/s41598-021-81200-z.

Abstract

Analysis of large-scale omics data along with biomedical images has gaining a huge interest in predicting phenotypic conditions towards personalized medicine. Multiple layers of investigations such as genomics, transcriptomics and proteomics, have led to high dimensionality and heterogeneity of data. Multi-omics data integration can provide meaningful contribution to early diagnosis and an accurate estimate of prognosis and treatment in cancer. Some multi-layer data structures have been developed to integrate multi-omics biological information, but none of these has been developed and evaluated to include radiomic data. We proposed to use MultiAssayExperiment (MAE) as an integrated data structure to combine multi-omics data facilitating the exploration of heterogeneous data. We improved the usability of the MAE, developing a Multi-omics Statistical Approaches (MuSA) tool that uses a Shiny graphical user interface, able to simplify the management and the analysis of radiogenomic datasets. The capabilities of MuSA were shown using public breast cancer datasets from TCGA-TCIA databases. MuSA architecture is modular and can be divided in Pre-processing and Downstream analysis. The pre-processing section allows data filtering and normalization. The downstream analysis section contains modules for data science such as correlation, clustering (i.e., heatmap) and feature selection methods. The results are dynamically shown in MuSA. MuSA tool provides an easy-to-use way to create, manage and analyze radiogenomic data. The application is specifically designed to guide no-programmer researchers through different computational steps. Integration analysis is implemented in a modular structure, making MuSA an easily expansible open-source software.

摘要

对大规模组学数据和生物医学图像的分析在预测个性化医疗中的表型条件方面引起了极大的兴趣。多层次的研究,如基因组学、转录组学和蛋白质组学,导致了数据的高维度和异质性。多组学数据的整合可以为癌症的早期诊断和预后及治疗的准确估计提供有意义的贡献。已经开发了一些多层数据结构来整合多组学生物信息,但没有一个被开发和评估来包括放射组学数据。我们提出使用 MultiAssayExperiment (MAE) 作为一个集成的数据结构来组合多组学数据,从而促进对异质数据的探索。我们通过开发一个使用 Shiny 图形用户界面的 Multi-omics Statistical Approaches (MuSA) 工具来改进 MAE 的可用性,该工具能够简化放射基因组数据集的管理和分析。使用 TCGA-TCIA 数据库中的公共乳腺癌数据集展示了 MuSA 的功能。MuSA 架构是模块化的,可以分为预处理和下游分析。预处理部分允许数据过滤和归一化。下游分析部分包含数据科学模块,如相关性、聚类(即热图)和特征选择方法。结果在 MuSA 中动态显示。MuSA 工具提供了一种简单易用的方法来创建、管理和分析放射基因组数据。该应用程序专门为没有编程经验的研究人员设计,通过不同的计算步骤进行引导。集成分析采用模块化结构实现,使 MuSA 成为一个易于扩展的开源软件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffdc/7811020/10f6fe74c163/41598_2021_81200_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验