Udvarhelyi Péter, Somogyi Bálint, Thiering Gergő, Gali Adam
Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary.
Phys Rev Lett. 2021 Nov 5;127(19):196402. doi: 10.1103/PhysRevLett.127.196402.
We identify the exact microscopic structure of the G photoluminescence center in silicon by first-principles calculations with including a self-consistent many-body perturbation method, which is a telecommunication wavelength single photon source. The defect constitutes of C_{s}C_{i} carbon impurities in its C_{s}─Si_{i}─C_{s} configuration in the neutral charge state, where s and i stand for the respective substitutional and interstitial positions in the Si lattice. We reveal that the observed fine structure of its optical signals originates from the athermal rotational reorientation of the defect. We attribute the monoclinic symmetry reported in optically detected magnetic resonance measurements to the reduced tunneling rate at very low temperatures. We discuss the thermally activated motional averaging of the defect properties and the nature of the qubit state.
我们通过包含自洽多体微扰方法的第一性原理计算,确定了硅中G光致发光中心的确切微观结构,该中心是一种电信波长单光子源。该缺陷由处于中性电荷态的CₛCᵢ碳杂质构成,其结构为Cₛ─Siᵢ─Cₛ,其中s和i分别代表硅晶格中的替代位置和间隙位置。我们揭示了观察到的其光信号的精细结构源于缺陷的非热旋转重取向。我们将光学检测磁共振测量中报道的单斜对称性归因于极低温度下降低的隧穿速率。我们讨论了缺陷性质的热激活运动平均和量子比特态的性质。