Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.
Nat Commun. 2022 Dec 12;13(1):7683. doi: 10.1038/s41467-022-35051-5.
A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm.
一种极具前景的扩展数百万量子比特的方法是使用量子光子集成电路(PIC),其中确定性光子源、可重构光学元件和单光子探测器在同一硅芯片上实现了单片集成。最近,在光学通信 O 波段中已经实现了硅中 G 中心和 W 中心等单光子发射器的隔离。然而,在所有以前的情况下,单光子发射器都是在随机位置不可控地产生的,这阻碍了它们的可扩展性。在这里,我们报告了使用聚焦离子束(FIB)以高概率可控地在硅片上制造单 G 和 W 中心。我们还实现了一种可扩展的宽束注入协议,与互补金属氧化物半导体(CMOS)技术兼容,以便在纳米尺度上所需位置制造单电信发射器。我们的发现为低于 100nm 的技术节点的工业规模光子量子处理器开辟了一条清晰且易于利用的途径。