Suppr超能文献

在蓝宝石上直接生长晶圆级高度取向的石墨烯。

Direct growth of wafer-scale highly oriented graphene on sapphire.

作者信息

Chen Zhaolong, Xie Chunyu, Wang Wendong, Zhao Jinpei, Liu Bingyao, Shan Jingyuan, Wang Xueyan, Hong Min, Lin Li, Huang Li, Lin Xiao, Yang Shenyuan, Gao Xuan, Zhang Yanfeng, Gao Peng, Novoselov Kostya S, Sun Jingyu, Liu Zhongfan

机构信息

Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Beijing Graphene Institute (BGI), Beijing 100095, China.

出版信息

Sci Adv. 2021 Nov 19;7(47):eabk0115. doi: 10.1126/sciadv.abk0115.

Abstract

Direct chemical vapor deposition (CVD) growth of wafer-scale high-quality graphene on dielectrics is of paramount importance for versatile applications. Nevertheless, the synthesized graphene is typically a polycrystalline film with high density of uncontrolled defects, resulting in a low carrier mobility and high sheet resistance. Here, we report the direct growth of highly oriented monolayer graphene films on sapphire wafers. Our growth strategy is achieved by designing an electromagnetic induction heating CVD operated at elevated temperature, where the high pyrolysis and migration barriers of carbon species are easily overcome. Meanwhile, the embryonic graphene domains are guided into good alignment by minimizing its configuration energy. The thus obtained graphene film accordingly manifests a markedly improved carrier mobility (14,700 square centimeters per volt per second at 4 kelvin) and reduced sheet resistance (587 ohms per square), which compare favorably with those from catalytic growth on polycrystalline metal foils and epitaxial growth on silicon carbide.

摘要

在电介质上通过直接化学气相沉积(CVD)法生长晶圆级高质量石墨烯对于多种应用至关重要。然而,合成的石墨烯通常是具有高密度未受控缺陷的多晶薄膜,导致载流子迁移率低和薄层电阻高。在此,我们报告了在蓝宝石晶圆上直接生长高度取向的单层石墨烯薄膜。我们的生长策略是通过设计在高温下运行的电磁感应加热CVD来实现的,在这种情况下,碳物种的高裂解和迁移势垒很容易被克服。同时,通过最小化其构型能量,将胚胎石墨烯域引导至良好的排列状态。因此获得的石墨烯薄膜相应地表现出显著提高的载流子迁移率(在4开尔文时约为14700平方厘米每伏每秒)和降低的薄层电阻(约为587欧姆每平方),这与在多晶金属箔上催化生长以及在碳化硅上外延生长所得到的结果相比具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dafb/8604399/5341d989ae5b/sciadv.abk0115-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验