Suppr超能文献

评估肺分配评分的准确性。

Assessing the accuracy of the lung allocation score.

机构信息

Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; MacLean Center for Clinical Medical Ethics, University of Chicago, Chicago, Illinois.

Pritzker School of Medicine, University of Chicago, Chicago, Illinois.

出版信息

J Heart Lung Transplant. 2022 Feb;41(2):217-225. doi: 10.1016/j.healun.2021.10.015. Epub 2021 Oct 28.

Abstract

BACKGROUND

The United States (US) Lung Allocation Score (LAS) relies on the performance of 2 survival models that estimate waitlist and post-transplant survival. These models were developed using data from 2005 to 2008, and it is unknown if they remain accurate.

METHODS

We performed an observational cohort study of US lung transplantation candidates and recipients greater than 12 years of age between February 19, 2015 and February 19, 2019. We evaluated the LAS waitlist and post-transplant models with the concordance probability estimate and by comparing predicted vs observed 1-year restricted mean survival times by risk decile. We then compared a nonparametric estimate of the observed LAS with the predicted LAS for each percentile of recipients.

RESULTS

The waitlist model ranked candidates (N = 11,539) in the correct risk order 72% of the time (95% CI 71%-73%), and underestimated candidate one-year survival by 136 days for the highest risk decile (p < 0.001). The post-transplant model ranked recipients (N = 9,377) in the correct risk order 57% of the time (95% CI 55-58%), and underestimated recipient one-year survival by 70 days for the highest risk decile (p < 0.001). Overall, the LAS at transplant explained only 56% of the variation in observed outcomes, and was increasingly inaccurate at higher predicted values.

CONCLUSIONS

The waitlist and the post-transplant models that constitute the LAS are inaccurate, limiting the ability of the system to rank candidates on the waitlist in the correct order. The LAS should therefore be updated and the underlying models should be modernized.

摘要

背景

美国肺分配评分(LAS)依赖于两个生存模型的表现,这两个模型分别估计等待名单和移植后的生存率。这些模型是使用 2005 年至 2008 年的数据开发的,目前尚不清楚它们是否仍然准确。

方法

我们对 2015 年 2 月 19 日至 2019 年 2 月 19 日期间年龄在 12 岁以上的美国肺移植候选人和受者进行了一项观察性队列研究。我们使用一致性概率估计和通过比较风险十分位数的预测与观察到的 1 年限制平均生存时间来评估 LAS 等待名单和移植后模型。然后,我们比较了每个百分位的受者的观察到的 LAS 与预测的 LAS 的非参数估计值。

结果

等待名单模型以 72%(95%CI 71%-73%)的时间正确地对候选者进行了风险排序,并且对最高风险十分位数的候选者 1 年生存率低估了 136 天(p < 0.001)。移植后模型以 57%(95%CI 55%-58%)的时间正确地对受者进行了风险排序,并且对最高风险十分位数的受者 1 年生存率低估了 70 天(p < 0.001)。总体而言,LAS 仅解释了观察结果变异的 56%,并且在预测值较高时准确性越来越差。

结论

构成 LAS 的等待名单和移植后模型不准确,限制了该系统正确对等待名单上的候选者进行排序的能力。因此,LAS 应该进行更新,并且底层模型应该现代化。

相似文献

1
Assessing the accuracy of the lung allocation score.评估肺分配评分的准确性。
J Heart Lung Transplant. 2022 Feb;41(2):217-225. doi: 10.1016/j.healun.2021.10.015. Epub 2021 Oct 28.
3
Variability in donor organ offer acceptance and lung transplantation survival.供体器官接受率和肺移植存活率的差异。
J Heart Lung Transplant. 2020 Apr;39(4):353-362. doi: 10.1016/j.healun.2019.12.010. Epub 2020 Jan 21.
6
Effect of the lung allocation score on lung transplantation in the United States.肺分配评分对美国肺移植的影响。
J Heart Lung Transplant. 2016 Apr;35(4):433-9. doi: 10.1016/j.healun.2016.01.010. Epub 2016 Jan 15.

引用本文的文献

2
National Organ Procurement and Transplant Network Heart Allocation Policy: 6 Years Later.国家器官获取与移植网络心脏分配政策:6年后
Circ Heart Fail. 2025 Jun;18(6):e011631. doi: 10.1161/CIRCHEARTFAILURE.124.011631. Epub 2025 Mar 21.

本文引用的文献

7
Effect of the lung allocation score on lung transplantation in the United States.肺分配评分对美国肺移植的影响。
J Heart Lung Transplant. 2016 Apr;35(4):433-9. doi: 10.1016/j.healun.2016.01.010. Epub 2016 Jan 15.
9
Influence of donor and recipient age in lung transplantation.供体和受体年龄对肺移植的影响。
J Heart Lung Transplant. 2015 Jan;34(1):43-49. doi: 10.1016/j.healun.2014.08.017. Epub 2014 Sep 1.
10
Impact of the lung allocation score on survival beyond 1 year.肺分配评分对1年以上生存期的影响。
Am J Transplant. 2014 Oct;14(10):2288-94. doi: 10.1111/ajt.12903. Epub 2014 Sep 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验