Suppr超能文献

肺炎和新冠肺炎患者公共X射线图像数据集的偏差分析

Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients.

作者信息

Catala Omar Del Tejo, Igual Ismael Salvador, Perez-Benito Francisco Javier, Escriva David Millan, Castello Vicent Ortiz, Llobet Rafael, Perez-Cortes Juan-Carlos

机构信息

Instituto Tecnológico de Informática (ITI), Universitat Politècnica de València 46022 Valencia Spain.

Department of Computer Systems and Computation (DSIC)Universitat Politècnica de València 46022 Valencia Spain.

出版信息

IEEE Access. 2021 Mar 10;9:42370-42383. doi: 10.1109/ACCESS.2021.3065456. eCollection 2021.

Abstract

Chest X-ray images are useful for early COVID-19 diagnosis with the advantage that X-ray devices are already available in health centers and images are obtained immediately. Some datasets containing X-ray images with cases (pneumonia or COVID-19) and controls have been made available to develop machine-learning-based methods to aid in diagnosing the disease. However, these datasets are mainly composed of different sources coming from pre-COVID-19 datasets and COVID-19 datasets. Particularly, we have detected a significant bias in some of the released datasets used to train and test diagnostic systems, which might imply that the results published are optimistic and may overestimate the actual predictive capacity of the techniques proposed. In this article, we analyze the existing bias in some commonly used datasets and propose a series of preliminary steps to carry out before the classic machine learning pipeline in order to detect possible biases, to avoid them if possible and to report results that are more representative of the actual predictive power of the methods under analysis.

摘要

胸部X光图像对于早期诊断新冠肺炎很有用,其优势在于健康中心已有X光设备,且能立即获取图像。一些包含病例(肺炎或新冠肺炎)和对照的X光图像数据集已可供使用,以开发基于机器学习的方法来辅助疾病诊断。然而,这些数据集主要由来自新冠肺炎疫情前数据集和新冠肺炎数据集的不同来源组成。特别是,我们在一些用于训练和测试诊断系统的已发布数据集中检测到了显著偏差,这可能意味着所发表的结果较为乐观,可能高估了所提出技术的实际预测能力。在本文中,我们分析了一些常用数据集中存在的偏差,并提出了一系列在经典机器学习流程之前要采取的初步步骤,以便检测可能的偏差,尽可能避免这些偏差,并报告更能代表所分析方法实际预测能力的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbee/8545228/66443d3ca012/salva1ab-3065456.jpg

相似文献

1
Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients.
IEEE Access. 2021 Mar 10;9:42370-42383. doi: 10.1109/ACCESS.2021.3065456. eCollection 2021.
6
Convolutional neural network model based on radiological images to support COVID-19 diagnosis: Evaluating database biases.
PLoS One. 2021 Mar 1;16(3):e0247839. doi: 10.1371/journal.pone.0247839. eCollection 2021.
7
10
ConvCoroNet: a deep convolutional neural network optimized with iterative thresholding algorithm for Covid-19 detection using chest X-ray images.
J Biomol Struct Dyn. 2024 Jul;42(11):5699-5712. doi: 10.1080/07391102.2023.2227726. Epub 2023 Jun 24.

引用本文的文献

3
Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey.
J Imaging. 2024 Jul 23;10(8):176. doi: 10.3390/jimaging10080176.
4
Digital Determinants of Health: Health data poverty amplifies existing health disparities-A scoping review.
PLOS Digit Health. 2023 Oct 12;2(10):e0000313. doi: 10.1371/journal.pdig.0000313. eCollection 2023 Oct.
5
Validating Automatic Concept-Based Explanations for AI-Based Digital Histopathology.
Sensors (Basel). 2022 Jul 18;22(14):5346. doi: 10.3390/s22145346.
6
Explainable artificial intelligence-based edge fuzzy images for COVID-19 detection and identification.
Appl Soft Comput. 2022 Jul;123:108966. doi: 10.1016/j.asoc.2022.108966. Epub 2022 May 13.
7
Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers.
Sensors (Basel). 2021 Aug 23;21(16):5657. doi: 10.3390/s21165657.

本文引用的文献

1
COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification and coarse localization.
Appl Intell (Dordr). 2021;51(2):1010-1021. doi: 10.1007/s10489-020-01867-1. Epub 2020 Sep 12.
2
CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection.
IEEE Access. 2020 May 14;8:91916-91923. doi: 10.1109/ACCESS.2020.2994762. eCollection 2020.
3
Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning Based Approach.
Biocybern Biomed Eng. 2021 Jul-Sep;41(3):867-879. doi: 10.1016/j.bbe.2021.05.013. Epub 2021 Jun 5.
4
A critic evaluation of methods for COVID-19 automatic detection from X-ray images.
Inf Fusion. 2021 Dec;76:1-7. doi: 10.1016/j.inffus.2021.04.008. Epub 2021 Apr 30.
5
A light CNN for detecting COVID-19 from CT scans of the chest.
Pattern Recognit Lett. 2020 Dec;140:95-100. doi: 10.1016/j.patrec.2020.10.001. Epub 2020 Oct 3.
7
The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection.
Health Inf Sci Syst. 2020 Sep 29;8(1):29. doi: 10.1007/s13755-020-00116-6. eCollection 2020 Dec.
8
Deep learning approaches for COVID-19 detection based on chest X-ray images.
Expert Syst Appl. 2021 Feb;164:114054. doi: 10.1016/j.eswa.2020.114054. Epub 2020 Sep 28.
9
Unveiling COVID-19 from CHEST X-Ray with Deep Learning: A Hurdles Race with Small Data.
Int J Environ Res Public Health. 2020 Sep 22;17(18):6933. doi: 10.3390/ijerph17186933.
10
Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm.
Soft comput. 2023;27(5):2635-2643. doi: 10.1007/s00500-020-05275-y. Epub 2020 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验