Suppr超能文献

分析用于从窦性节律 ECG 预测房颤的人工智能系统,包括人口统计学和特征可视化。

Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization.

机构信息

Biometrics and Data Pattern Analytics Lab, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Calle Francisco Tomas Y Valiente, 11, C-235, 28049, Madrid, Spain.

Instituto de Investigacion Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.

出版信息

Sci Rep. 2021 Nov 23;11(1):22786. doi: 10.1038/s41598-021-02179-1.

Abstract

Atrial fibrillation (AF) is an abnormal heart rhythm, asymptomatic in many cases, that causes several health problems and mortality in population. This retrospective study evaluates the ability of different AI-based models to predict future episodes of AF from electrocardiograms (ECGs) recorded during normal sinus rhythm. Patients are divided into two classes according to AF occurrence or sinus rhythm permanence along their several ECGs registry. In the constrained scenario of balancing the age distributions between classes, our best AI model predicts future episodes of AF with area under the curve (AUC) 0.79 (0.72-0.86). Multiple scenarios and age-sex-specific groups of patients are considered, achieving best performance of prediction for males older than 70 years. These results point out the importance of considering different demographic groups in the analysis of AF prediction, showing considerable performance gaps among them. In addition to the demographic analysis, we apply feature visualization techniques to identify the most important portions of the ECG signals in the task of AF prediction, improving this way the interpretability and understanding of the AI models. These results and the simplicity of recording ECGs during check-ups add feasibility to clinical applications of AI-based models.

摘要

心房颤动(AF)是一种异常的心律,在许多情况下无症状,但会导致人群中出现多种健康问题和死亡。这项回顾性研究评估了不同基于人工智能的模型从窦性心律期间记录的心电图(ECG)预测未来心房颤动发作的能力。根据患者在其多次心电图记录期间的 AF 发生或窦性心律持续情况,将患者分为两类。在平衡两类人群年龄分布的受限情况下,我们最好的 AI 模型预测未来心房颤动发作的曲线下面积(AUC)为 0.79(0.72-0.86)。考虑了多种情况和年龄性别特异性患者群体,为年龄大于 70 岁的男性患者实现了最佳的预测性能。这些结果指出了在 AF 预测分析中考虑不同人群的重要性,显示出它们之间存在相当大的性能差距。除了人口统计学分析,我们还应用特征可视化技术来识别心电图信号中对 AF 预测任务最重要的部分,从而提高 AI 模型的可解释性和理解。这些结果和在体检期间记录心电图的简单性增加了基于人工智能的模型在临床应用中的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d9/8610971/5796da905695/41598_2021_2179_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验