Ahmed Bilal, Shahid Mohammad, Syed Asad, Rajput Vishnu D, Elgorban Abdallah M, Minkina Tatiana, Bahkali Ali H, Lee Jintae
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India.
Biology (Basel). 2021 Nov 8;10(11):1149. doi: 10.3390/biology10111149.
Drought or water stress is a limiting factor that hampers the growth and yield of edible crops. Drought-tolerant plant growth-promoting rhizobacteria (PGPR) can mitigate water stress in crops by synthesizing multiple bioactive molecules. Here, strain PAB19 recovered from rhizospheric soil was biochemically and molecularly characterized, and identified as sp./ (MT672579.1). Strain PAB19 tolerated an exceptionally high level of drought (18% PEG-6000) and produced indole-3-acetic acid (176.2 ± 5.6 µg mL), ACC deaminase (56.6 ± 5.0 µg mL), salicylic acid (42.5 ± 3.0 µg mL), 2,3-dihydroxy benzoic acid (DHBA) (44.3 ± 2.3 µg mL), exopolysaccharide (204 ± 14.7 µg mL), alginate (82.3 ± 6.5 µg mL), and solubilized tricalcium phosphate (98.3 ± 3.5 µg mL), in the presence of 15% polyethylene glycol. Furthermore, strain PAB19 alleviated water stress and significantly ( ≤ 0.05) improved the overall growth and biochemical attributes of (L.) R. Wilczek. For instance, at 2% PEG stress, PAB19 inoculation maximally increased germination, root dry biomass, leaf carotenoid content, nodule biomass, leghaemoglobin (LHb) content, leaf water potential (ΨL), membrane stability index (MSI), and pod yield by 10%, 7%, 14%, 38%, 9%, 17%, 11%, and 11%, respectively, over un-inoculated plants. Additionally, PAB19 inoculation reduced two stressor metabolites, proline and malondialdehyde, and antioxidant enzymes (POD, SOD, CAT, and GR) levels in foliage in water stress conditions. Following inoculation of strain PAB19 with 15% PEG in soil, stomatal conductance, intercellular CO concentration, transpiration rate, water vapor deficit, intrinsic water use efficiency, and photosynthetic rate were significantly improved by 12%, 8%, 42%, 10%, 9% and 16%, respectively. Rhizospheric CFU counts of PAB19 were 2.33 and 2.11 log CFU g after treatment with 15% PEG solution and 8.46 and 6.67 log CFU g for untreated controls at 40 and 80 DAS, respectively. Conclusively, this study suggests the potential of sp./ PAB19 to alleviate water stress by improving the biological and biochemical features and of under water-deficit conditions.
干旱或水分胁迫是限制食用作物生长和产量的一个因素。耐旱的植物促生根际细菌(PGPR)可以通过合成多种生物活性分子来减轻作物的水分胁迫。在此,对从根际土壤中分离得到的菌株PAB19进行了生化和分子特征分析,并鉴定为sp./(MT672579.1)。菌株PAB19能够耐受极高水平的干旱(18%聚乙二醇-6000),并在15%聚乙二醇存在的情况下产生吲哚-3-乙酸(176.2±5.6μg/mL)、ACC脱氨酶(56.6±5.0μg/mL)、水杨酸(42.5±3.0μg/mL)、2,3-二羟基苯甲酸(DHBA)(44.3±2.3μg/mL)、胞外多糖(204±14.7μg/mL)、海藻酸盐(82.3±6.5μg/mL)以及溶解的磷酸三钙(98.3±3.5μg/mL)。此外,菌株PAB19减轻了水分胁迫,并显著(≤0.05)改善了(L.)R. Wilczek的整体生长和生化特性。例如,在2%聚乙二醇胁迫下,接种PAB19的植株发芽率、根干生物量、叶片类胡萝卜素含量、根瘤生物量、豆血红蛋白(LHb)含量、叶片水势(ΨL)、膜稳定性指数(MSI)和荚果产量分别比未接种植株最大提高了10%、7%、14%、38%、9%、17%、11%和11%。此外,接种PAB19降低了水分胁迫条件下叶片中两种应激代谢产物脯氨酸和丙二醛以及抗氧化酶(POD、SOD、CAT和GR)的水平。在土壤中用15%聚乙二醇处理接种菌株PAB19后,气孔导度、细胞间CO浓度、蒸腾速率、水汽亏缺、内在水分利用效率和光合速率分别显著提高了12%、8%、42%、10%、9%和16%。在40和80天龄时,用15%聚乙二醇溶液处理后PAB19的根际CFU计数分别为2.33和2.11 log CFU/g,未处理对照分别为8.46和6.67 log CFU/g。总之,本研究表明sp./PAB19有潜力通过改善生物和生化特征来减轻水分胁迫,并在缺水条件下提高的性能。