Suppr超能文献

基于深度学习在彩色眼底照片中识别周围神经病变

Identifying Peripheral Neuropathy in Colour Fundus Photographs Based on Deep Learning.

作者信息

Cervera Diego R, Smith Luke, Diaz-Santana Luis, Kumar Meenakshi, Raman Rajiv, Sivaprasad Sobha

机构信息

Cambridge Consultants, Science Park, Milton Road, Cambridge CB4 0DW, UK.

Shri Bhagwan Mahavir Department of Vitreoretinal Services, Sankara Nethralaya, No. 41 (Old 18), College Road, Chennai 600 006, India.

出版信息

Diagnostics (Basel). 2021 Oct 20;11(11):1943. doi: 10.3390/diagnostics11111943.

Abstract

The aim of this study was to develop and validate a deep learning-based system to detect peripheral neuropathy (DN) from retinal colour images in people with diabetes. Retinal images from 1561 people with diabetes were used to predictDN diagnosed on vibration perception threshold. A total of 189 had diabetic retinopathy (DR), 276 had DN, and 43 had both DR and DN. 90% of the images were used for training and validation and 10% for testing. Deep neural networks, including Squeezenet, Inception, and Densenet were utilized, and the architectures were tested with and without pre-trained weights. Random transform of images was used during training. The algorithm was trained and tested using three sets of data: all retinal images, images without DR and images with DR. Area under the ROC curve (AUC) was used to evaluate performance. The AUC to predict DN on the whole cohort was 0.8013 (±0.0257) on the validation set and 0.7097 (±0.0031) on the test set. The AUC increased to 0.8673 (±0.0088) in the presence of DR. The retinal images can be used to identify individuals with DN and provides an opportunity to educate patients about their DN status when they attend DR screening.

摘要

本研究的目的是开发并验证一种基于深度学习的系统,用于从糖尿病患者的视网膜彩色图像中检测糖尿病性周围神经病变(DN)。使用1561名糖尿病患者的视网膜图像来预测基于振动觉阈值诊断出的DN。共有189人患有糖尿病性视网膜病变(DR),276人患有DN,43人同时患有DR和DN。90%的图像用于训练和验证,10%用于测试。利用了包括Squeezenet、Inception和Densenet在内的深度神经网络,并对有无预训练权重的架构进行了测试。在训练期间使用了图像的随机变换。该算法使用三组数据进行训练和测试:所有视网膜图像、无DR的图像和有DR的图像。使用ROC曲线下面积(AUC)来评估性能。在验证集上,预测整个队列中DN的AUC为0.8013(±0.0257),在测试集上为0.7097(±0.0031)。在存在DR的情况下,AUC增至0.8673(±0.0088)。视网膜图像可用于识别患有DN的个体,并为患者在进行DR筛查时提供一个了解其DN状况的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d3/8623417/051a4c3a34fd/diagnostics-11-01943-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验