Suppr超能文献

利用眼科成像预测全身参数和疾病的人工智能

Artificial Intelligence in Predicting Systemic Parameters and Diseases From Ophthalmic Imaging.

作者信息

Betzler Bjorn Kaijun, Rim Tyler Hyungtaek, Sabanayagam Charumathi, Cheng Ching-Yu

机构信息

Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.

出版信息

Front Digit Health. 2022 May 26;4:889445. doi: 10.3389/fdgth.2022.889445. eCollection 2022.

Abstract

Artificial Intelligence (AI) analytics has been used to predict, classify, and aid clinical management of multiple eye diseases. Its robust performances have prompted researchers to expand the use of AI into predicting systemic, non-ocular diseases and parameters based on ocular images. Herein, we discuss the reasons why the eye is well-suited for systemic applications, and review the applications of deep learning on ophthalmic images in the prediction of demographic parameters, body composition factors, and diseases of the cardiovascular, hematological, neurodegenerative, metabolic, renal, and hepatobiliary systems. Three main imaging modalities are included-retinal fundus photographs, optical coherence tomographs and external ophthalmic images. We examine the range of systemic factors studied from ophthalmic imaging in current literature and discuss areas of future research, while acknowledging current limitations of AI systems based on ophthalmic images.

摘要

人工智能(AI)分析已被用于多种眼部疾病的预测、分类及辅助临床管理。其出色的表现促使研究人员将AI的应用扩展到基于眼部图像预测全身性非眼部疾病及参数。在此,我们讨论眼部非常适合全身性应用的原因,并回顾深度学习在眼科图像预测人口统计学参数、身体成分因素以及心血管、血液、神经退行性、代谢、肾脏和肝胆系统疾病方面的应用。包括三种主要成像方式——视网膜眼底照片、光学相干断层扫描和眼科外部图像。我们研究了当前文献中从眼科成像研究的全身性因素范围,并讨论了未来研究领域,同时承认基于眼科图像的AI系统目前存在的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c88/9190759/5c8a6c07a33b/fdgth-04-889445-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验