Suppr超能文献

用于在X光扫描中对新冠肺炎和肺炎疾病进行计算机辅助诊断的级联深度学习分类器。

Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans.

作者信息

Karar Mohamed Esmail, Hemdan Ezz El-Din, Shouman Marwa A

机构信息

Department of Computer Engineering and Networks, College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia.

Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Minuf, 32952 Egypt.

出版信息

Complex Intell Systems. 2021;7(1):235-247. doi: 10.1007/s40747-020-00199-4. Epub 2020 Sep 22.

Abstract

Computer-aided diagnosis (CAD) systems are considered a powerful tool for physicians to support identification of the novel Coronavirus Disease 2019 (COVID-19) using medical imaging modalities. Therefore, this article proposes a new framework of cascaded deep learning classifiers to enhance the performance of these CAD systems for highly suspected COVID-19 and pneumonia diseases in X-ray images. Our proposed deep learning framework constitutes two major advancements as follows. First, complicated multi-label classification of X-ray images have been simplified using a series of binary classifiers for each tested case of the health status. That mimics the clinical situation to diagnose potential diseases for a patient. Second, the cascaded architecture of COVID-19 and pneumonia classifiers is flexible to use different fine-tuned deep learning models simultaneously, achieving the best performance of confirming infected cases. This study includes eleven pre-trained convolutional neural network models, such as Visual Geometry Group Network (VGG) and Residual Neural Network (ResNet). They have been successfully tested and evaluated on public X-ray image dataset for normal and three diseased cases. The results of proposed cascaded classifiers showed that VGG16, ResNet50V2, and Dense Neural Network (DenseNet169) models achieved the best detection accuracy of COVID-19, viral (Non-COVID-19) pneumonia, and bacterial pneumonia images, respectively. Furthermore, the performance of our cascaded deep learning classifiers is superior to other multi-label classification methods of COVID-19 and pneumonia diseases in previous studies. Therefore, the proposed deep learning framework presents a good option to be applied in the clinical routine to assist the diagnostic procedures of COVID-19 infection.

摘要

计算机辅助诊断(CAD)系统被认为是医生利用医学成像方式辅助识别2019年新型冠状病毒病(COVID-19)的有力工具。因此,本文提出了一种新的级联深度学习分类器框架,以提高这些CAD系统对X射线图像中高度疑似COVID-19和肺炎疾病的性能。我们提出的深度学习框架有以下两个主要进展。首先,通过为每个健康状况测试病例使用一系列二分类器,简化了X射线图像复杂的多标签分类。这模仿了临床诊断患者潜在疾病的情况。其次,COVID-19和肺炎分类器的级联架构可以灵活地同时使用不同的微调深度学习模型,实现确认感染病例的最佳性能。本研究包括11个预训练的卷积神经网络模型,如视觉几何组网络(VGG)和残差神经网络(ResNet)。它们已在正常和三种疾病病例的公共X射线图像数据集上成功进行了测试和评估。所提出的级联分类器的结果表明,VGG16、ResNet50V2和密集神经网络(DenseNet169)模型分别在COVID-19、病毒性(非COVID-19)肺炎和细菌性肺炎图像的检测中取得了最佳准确率。此外,我们的级联深度学习分类器的性能优于先前研究中其他COVID-19和肺炎疾病的多标签分类方法。因此,所提出的深度学习框架为应用于临床常规以辅助COVID-19感染的诊断程序提供了一个很好的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12c/7507595/e3653b724318/40747_2020_199_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验