Krypotos Angelos-Miltiadis, Beckers Tom, Kindt Merel, Wagenmakers Eric-Jan
a Department of Clinical Psychology , University of Amsterdam , Amsterdam , the Netherlands.
b Amsterdam Brain and Cognition , University of Amsterdam , Amsterdam , the Netherlands.
Cogn Emot. 2015;29(8):1424-44. doi: 10.1080/02699931.2014.985635. Epub 2014 Dec 9.
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.
分析反应时间(RT)任务的常用方法在心理学的不同学科中经常被使用,但存在一些局限性,比如无法直接测量潜在的感兴趣的心理过程,以及无法考虑与个体表现点估计相关的不确定性。在此,我们讨论一种贝叶斯分层扩散模型,并将其应用于反应时间数据。该模型使研究人员能够将表现分解为有意义的心理过程,并能最佳地考虑个体差异和共性,即使数据相对较少。我们通过将贝叶斯分层扩散模型应用于在情感和精神病理学文献中广泛使用的趋近-回避任务的表现,突出了该模型分解的优势。对两个实验数据集的模型拟合表明该模型表现良好。贝叶斯分层扩散模型克服了当前分析程序的重要局限性,并为潜在的感兴趣的心理过程提供了更深入的见解。