BPMP, University of Montpellier, CNRS, INRAE, Montpellier, France.
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
Trends Plant Sci. 2022 May;27(5):502-509. doi: 10.1016/j.tplants.2021.11.005. Epub 2021 Nov 27.
Photosynthetic organisms convert light energy into chemical energy stored in carbohydrates. To perform this process, an adequate supply of essential mineral elements, such as iron, is required in the chloroplast. Because iron plays a crucial role during electron transport and chlorophyll formation, iron deficiency alters photosynthesis and promotes chlorosis, or the yellowing of leaves. Intriguingly, iron deficiency-induced chlorosis can be reverted by the depletion of other micronutrients [i.e., manganese (Mn)] or macronutrients [i.e., sulfur (S) or phosphorus (P)], raising the question of how plants integrate nutrient status to control photosynthesis. Here, we review how improving our understanding of the complex relationship between nutrient homeostasis and photosynthesis has great potential for crop improvement.
光合作用生物将光能转化为储存在碳水化合物中的化学能。为了完成这个过程,叶绿体中需要充足的铁等必需的矿物质元素供应。由于铁在电子传递和叶绿素形成过程中起着至关重要的作用,因此缺铁会改变光合作用并促进叶片黄化,即黄化。有趣的是,缺铁引起的黄化可以通过耗尽其他微量元素[例如锰(Mn)]或大量元素[例如硫(S)或磷(P)]来逆转,这就提出了一个问题,即植物如何整合营养状况来控制光合作用。在这里,我们回顾了如何提高我们对养分稳态和光合作用之间复杂关系的理解,这对作物改良具有巨大的潜力。