Suppr超能文献

用于肺肿瘤分割的水循环蝙蝠算法与基于字典的可变形模型

Water Cycle Bat Algorithm and Dictionary-Based Deformable Model for Lung Tumor Segmentation.

作者信息

Shetty Mamtha V, Jayadevappa D, Veena G N

机构信息

JSS Academy of Technical Education, Bengaluru, VTU, India.

Ramaiah Institute of Technology, Bengaluru, India.

出版信息

Int J Biomed Imaging. 2021 Nov 22;2021:3492099. doi: 10.1155/2021/3492099. eCollection 2021.

Abstract

Among the different types of cancers, lung cancer is one of the widespread diseases which causes the highest number of deaths every year. The early detection of lung cancer is very essential for increasing the survival rate in patients. Although computed tomography (CT) is the preferred choice for lungs imaging, sometimes CT images may produce less tumor visibility regions and unconstructive rates in tumor portions. Hence, the development of an efficient segmentation technique is necessary. In this paper, water cycle bat algorithm- (WCBA-) based deformable model approach is proposed for lung tumor segmentation. In the preprocessing stage, a median filter is used to remove the noise from the input image and to segment the lung lobe regions, and Bayesian fuzzy clustering is applied. In the proposed method, deformable model is modified by the dictionary-based algorithm to segment the lung tumor accurately. In the dictionary-based algorithm, the update equation is modified by the proposed WCBA and is designed by integrating water cycle algorithm (WCA) and bat algorithm (BA).

摘要

在不同类型的癌症中,肺癌是每年导致死亡人数最多的常见疾病之一。肺癌的早期检测对于提高患者的生存率至关重要。尽管计算机断层扫描(CT)是肺部成像的首选方法,但有时CT图像可能会产生肿瘤可见性较低的区域以及肿瘤部分的非建设性比率。因此,开发一种有效的分割技术是必要的。本文提出了一种基于水循环蝙蝠算法(WCBA)的可变形模型方法用于肺肿瘤分割。在预处理阶段,使用中值滤波器去除输入图像中的噪声并分割肺叶区域,并应用贝叶斯模糊聚类。在所提出的方法中,可变形模型通过基于字典的算法进行修改,以准确分割肺肿瘤。在基于字典的算法中,更新方程通过所提出的WCBA进行修改,并通过整合水循环算法(WCA)和蝙蝠算法(BA)来设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4202/8629667/a406d3584b8a/IJBI2021-3492099.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验