Suppr超能文献

用于状态依赖型运动调节的电路。

Circuits for State-Dependent Modulation of Locomotion.

作者信息

Pernía-Andrade Alejandro J, Wenger Nikolaus, Esposito Maria S, Tovote Philip

机构信息

Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.

Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.

出版信息

Front Hum Neurosci. 2021 Nov 10;15:745689. doi: 10.3389/fnhum.2021.745689. eCollection 2021.

Abstract

Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.

摘要

全脑神经网络使双足动物和四足动物能够以上下文和状态依赖的方式表达适应性运动行为,例如,对威胁或奖励做出反应。这些行为包括运动起始、维持和终止之间的动态转换。过去十年的进展揭示了多个脑回路的复杂相互作用对这些个体运动阶段的精细协调。本综述概述了运动起始、维持和终止的状态依赖调节的神经基础,重点关注来自啮齿动物以回路为中心研究的见解。综述的证据表明,一个涉及连接皮层、中脑和延髓区域的兴奋性回路元件的全脑网络似乎是跨不同高阶状态启动运动的共同基础。运动皮层和中脑运动区中的特定网络元件驱动初始姿势调整和运动起始。基底神经节的微回路通过执行动作选择计算,触发目标导向的运动。运动起始受位于基底前脑、下丘脑和延髓区域(如蓝斑)的神经调节回路调控。运动的维持需要一个更大的神经元网络的相互作用,该网络包括运动、感觉和联合皮层元件,以及上丘、小脑、导水管周围灰质、中脑运动区和延髓网状结构内的特定回路。最后,作为防御性情绪状态(如急性焦虑)的重要组成部分的运动停止,是通过一个涉及下丘脑、杏仁核、导水管周围灰质和延髓运动前中心的生存回路网络介导的。通过超越功能性脑区的组织原则,本综述促进了以回路为中心的高阶状态对运动调节的观点,并强调了细胞类型和投射通路等单个网络元件的重要性。认识到较小的、可识别的回路元件功能障碍会影响更大的网络功能,这支持了在运动网络障碍治疗中更具机械性和针对性的治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd24/8631332/25adf4d83b81/fnhum-15-745689-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验