Suppr超能文献

自然口语的使用结合基于自我报告的食物摄入与食物成分数据的自动映射,用于低负担实时膳食评估:方法比较研究。

Use of Natural Spoken Language With Automated Mapping of Self-reported Food Intake to Food Composition Data for Low-Burden Real-time Dietary Assessment: Method Comparison Study.

机构信息

Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States.

出版信息

J Med Internet Res. 2021 Dec 6;23(12):e26988. doi: 10.2196/26988.

Abstract

BACKGROUND

Self-monitoring food intake is a cornerstone of national recommendations for health, but existing apps for this purpose are burdensome for users and researchers, which limits use.

OBJECTIVE

We developed and pilot tested a new app (COCO Nutritionist) that combines speech understanding technology with technologies for mapping foods to appropriate food composition codes in national databases, for lower-burden and automated nutritional analysis of self-reported dietary intake.

METHODS

COCO was compared with the multiple-pass, interviewer-administered 24-hour recall method for assessment of energy intake. COCO was used for 5 consecutive days, and 24-hour dietary recalls were obtained for two of the days. Participants were 35 women and men with a mean age of 28 (range 20-58) years and mean BMI of 24 (range 17-48) kg/m.

RESULTS

There was no significant difference in energy intake between values obtained by COCO and 24-hour recall for days when both methods were used (mean 2092, SD 1044 kcal versus mean 2030, SD 687 kcal, P=.70). There were also no significant differences between the methods for percent of energy from protein, carbohydrate, and fat (P=.27-.89), and no trend in energy intake obtained with COCO over the entire 5-day study period (P=.19).

CONCLUSIONS

This first demonstration of a dietary assessment method using natural spoken language to map reported foods to food composition codes demonstrates a promising new approach to automate assessments of dietary intake.

摘要

背景

自我监测食物摄入量是国家健康建议的基石,但目前用于此目的的应用程序对用户和研究人员来说负担过重,这限制了其使用。

目的

我们开发并试点测试了一个新的应用程序(COCO 营养师),该程序将语音理解技术与将食物映射到国家数据库中适当食物成分代码的技术相结合,用于自动进行自我报告饮食摄入的低负担和营养分析。

方法

COCO 与多次、由访谈员进行的 24 小时回顾法进行了比较,以评估能量摄入。COCO 连续使用了 5 天,并在其中两天获得了 24 小时膳食回顾。参与者为 35 名女性和男性,平均年龄为 28 岁(范围为 20-58 岁),平均 BMI 为 24(范围为 17-48)kg/m。

结果

当两种方法都使用时,COCO 和 24 小时回顾法获得的能量摄入量之间没有显著差异(平均值分别为 2092、SD 1044 千卡和 2030、SD 687 千卡,P=.70)。两种方法在蛋白质、碳水化合物和脂肪的能量百分比方面也没有显著差异(P=.27-.89),并且在整个 5 天研究期间,COCO 获得的能量摄入量没有趋势(P=.19)。

结论

这是首次使用自然口语将报告的食物映射到食物成分代码的膳食评估方法的演示,展示了一种有前途的新方法,可以自动评估膳食摄入量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/768c/8691405/cba59d7eef79/jmir_v23i12e26988_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验