Suppr超能文献

转录谱分析和机器学习揭示了 COVID-19 诊断中鼻腔拭子和肺组织中 I 型干扰素诱导的宿主反应的一致生物标志物。

Transcriptional Profiling and Machine Learning Unveil a Concordant Biosignature of Type I Interferon-Inducible Host Response Across Nasal Swab and Pulmonary Tissue for COVID-19 Diagnosis.

机构信息

School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.

Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.

出版信息

Front Immunol. 2021 Nov 22;12:733171. doi: 10.3389/fimmu.2021.733171. eCollection 2021.

Abstract

BACKGROUND

COVID-19, caused by SARS-CoV-2 virus, is a global pandemic with high mortality and morbidity. Limited diagnostic methods hampered the infection control. Since the direct detection of virus mainly by RT-PCR may cause false-negative outcome, host response-dependent testing may serve as a complementary approach for improving COVID-19 diagnosis.

OBJECTIVE

Our study discovered a highly-preserved transcriptional profile of Type I interferon (IFN-I)-dependent genes for COVID-19 complementary diagnosis.

METHODS

Computational language R-dependent machine learning was adopted for mining highly-conserved transcriptional profile (RNA-sequencing) across heterogeneous samples infected by SARS-CoV-2 and other respiratory infections. The transcriptomics/high-throughput sequencing data were retrieved from NCBI-GEO datasets (GSE32155, GSE147507, GSE150316, GSE162835, GSE163151, GSE171668, GSE182569). Mathematical approaches for homological analysis were as follows: adjusted rand index-related similarity analysis, geometric and multi-dimensional data interpretation, UpsetR, t-distributed Stochastic Neighbor Embedding (t-SNE), and Weighted Gene Co-expression Network Analysis (WGCNA). Besides, Interferome Database was used for predicting the transcriptional factors possessing IFN-I promoter-binding sites to the key IFN-I genes for COVID-19 diagnosis.

RESULTS

In this study, we identified a highly-preserved gene module between SARS-CoV-2 infected nasal swab and postmortem lung tissue regulating IFN-I signaling for COVID-19 complementary diagnosis, in which the following 14 IFN-I-stimulated genes are highly-conserved, including BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2, OAS1, OAS2, OAS3, OASL, RSAD2, and STAT1. The stratified severity of COVID-19 may also be identified by the transcriptional level of these 14 IFN-I genes.

CONCLUSION

Using transcriptional and computational analysis on RNA-seq data retrieved from NCBI-GEO, we identified a highly-preserved 14-gene transcriptional profile regulating IFN-I signaling in nasal swab and postmortem lung tissue infected by SARS-CoV-2. Such a conserved biosignature involved in IFN-I-related host response may be leveraged for COVID-19 diagnosis.

摘要

背景

由 SARS-CoV-2 病毒引起的 COVID-19 是一种死亡率和发病率都很高的全球大流行病。有限的诊断方法阻碍了感染控制。由于病毒的直接检测主要通过 RT-PCR 可能导致假阴性结果,因此基于宿主反应的检测可能是提高 COVID-19 诊断的一种补充方法。

目的

我们的研究发现了一种针对 COVID-19 互补诊断的高度保守的 I 型干扰素(IFN-I)依赖性基因转录谱。

方法

采用基于计算语言 R 的机器学习方法,挖掘 SARS-CoV-2 和其他呼吸道感染感染的异质样本中高度保守的转录谱(RNA-seq)。从 NCBI-GEO 数据集(GSE32155、GSE147507、GSE150316、GSE162835、GSE163151、GSE171668、GSE182569)中检索转录组学/高通量测序数据。同源分析的数学方法如下:调整后的 rand 指数相关相似性分析、几何和多维数据分析、UpsetR、t 分布随机邻居嵌入(t-SNE)和加权基因共表达网络分析(WGCNA)。此外,还使用 Interferome 数据库预测具有 IFN-I 启动子结合位点的转录因子,以确定用于 COVID-19 诊断的关键 IFN-I 基因。

结果

在这项研究中,我们确定了一个在 SARS-CoV-2 感染的鼻拭子和死后肺组织之间高度保守的基因模块,该模块调节 IFN-I 信号通路,用于 COVID-19 的互补诊断,其中以下 14 个 IFN-I 刺激基因高度保守,包括 BST2、IFIT1、IFIT2、IFIT3、IFITM1、ISG15、MX1、MX2、OAS1、OAS2、OAS3、OASL、RSAD2 和 STAT1。这些 IFN-I 基因的转录水平也可以识别 COVID-19 的严重程度分层。

结论

使用从 NCBI-GEO 检索的 RNA-seq 数据进行转录和计算分析,我们确定了一个在 SARS-CoV-2 感染的鼻拭子和死后肺组织中高度保守的 14 基因转录谱,该转录谱调节 IFN-I 信号通路。这种涉及 IFN-I 相关宿主反应的保守生物标志物可用于 COVID-19 诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8959/8647662/5fa7e17f3975/fimmu-12-733171-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验