Suppr超能文献

基于定量超声的影像组学在预测局部晚期乳腺癌患者复发中的应用

Radiomics in predicting recurrence for patients with locally advanced breast cancer using quantitative ultrasound.

作者信息

Dasgupta Archya, Bhardwaj Divya, DiCenzo Daniel, Fatima Kashuf, Osapoetra Laurentius Oscar, Quiaoit Karina, Saifuddin Murtuza, Brade Stephen, Trudeau Maureen, Gandhi Sonal, Eisen Andrea, Wright Frances, Look-Hong Nicole, Sadeghi-Naini Ali, Curpen Belinda, Kolios Michael C, Sannachi Lakshmanan, Czarnota Gregory J

机构信息

Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.

Department of Radiation Oncology, University of Toronto, Toronto, Canada.

出版信息

Oncotarget. 2021 Dec 7;12(25):2437-2448. doi: 10.18632/oncotarget.28139.

Abstract

BACKGROUND

The purpose of the study was to investigate the role of pre-treatment quantitative ultrasound (QUS)-radiomics in predicting recurrence for patients with locally advanced breast cancer (LABC).

MATERIALS AND METHODS

A prospective study was conducted in patients with LABC ( = 83). Primary tumours were scanned using a clinical ultrasound device before starting treatment. Ninety-five imaging features were extracted-spectral features, texture, and texture-derivatives. Patients were determined to have recurrence or no recurrence based on clinical outcomes. Machine learning classifiers with k-nearest neighbour (KNN) and support vector machine (SVM) were evaluated for model development using a maximum of 3 features and leave-one-out cross-validation.

RESULTS

With a median follow up of 69 months (range 7-118 months), 28 patients had disease recurrence (local or distant). The best classification results were obtained using an SVM classifier with a sensitivity, specificity, accuracy and area under curve of 71%, 87%, 82%, and 0.76, respectively. Using the SVM model for the predicted non-recurrence and recurrence groups, the estimated 5-year recurrence-free survival was 83% and 54% ( = 0.003), and the predicted 5-year overall survival was 85% and 74% ( = 0.083), respectively.

CONCLUSIONS

A QUS-radiomics model using higher-order texture derivatives can identify patients with LABC at higher risk of disease recurrence before starting treatment.

摘要

背景

本研究旨在探讨治疗前定量超声(QUS)放射组学在预测局部晚期乳腺癌(LABC)患者复发中的作用。

材料与方法

对LABC患者(n = 83)进行了一项前瞻性研究。在开始治疗前,使用临床超声设备对原发肿瘤进行扫描。提取了95个影像特征——光谱特征、纹理和纹理导数。根据临床结果确定患者是否复发。使用k近邻(KNN)和支持向量机(SVM)的机器学习分类器,采用最多3个特征和留一法交叉验证进行模型开发评估。

结果

中位随访69个月(范围7 - 118个月),28例患者出现疾病复发(局部或远处)。使用SVM分类器获得了最佳分类结果,其灵敏度、特异度、准确度和曲线下面积分别为71%、87%、82%和0.76。使用SVM模型对预测的无复发组和复发组进行分析,估计5年无复发生存率分别为83%和54%(P = 0.003),预测的5年总生存率分别为85%和74%(P = 0.083)。

结论

使用高阶纹理导数的QUS放射组学模型可以在开始治疗前识别出LABC疾病复发风险较高的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9522/8664392/718b48c87aee/oncotarget-12-2437-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验