Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA.
Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
Theranostics. 2022 Jan 1;12(1):362-378. doi: 10.7150/thno.65597. eCollection 2022.
Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.
虽然外科活检为脑癌的基因组特征提供了直接获取组织的途径,但它们具有侵入性,并带来重大的临床风险。通过基于血液的液体活检来管理脑癌是一种微创替代方法;然而,血脑屏障 (BBB) 限制了脑肿瘤衍生的分子生物标志物的释放,这些标志物对于敏感诊断是必要的。使用小鼠多形性胶质母细胞瘤 (GBM) 模型证明了聚焦超声 (FUS) 启用的液体活检 (sonobiopsy) 的能力,与传统的基于血液的液体活检相比,它可以提高脑肿瘤特异性基因突变的诊断灵敏度。此外,开发了猪 GBM 模型来描述 sonobiopsy 在人类中的转化意义。在小鼠和猪中进行磁共振成像 (MRI) 引导的 FUS 超声处理,以局部增强 GBM 肿瘤的 BBB 通透性。采集对比增强 T 加权磁共振图像以评估 BBB 通透性变化。在 FUS 超声处理后立即采集血液。使用液滴数字 PCR 定量循环肿瘤 DNA (ctDNA) 中脑肿瘤特异性基因突变的水平。进行组织学染色以评估 sonobiopsy 引起的非靶向组织损伤的潜力。Sonobiopsy 将小鼠 GBM 模型中 EGFRvIII 的检测灵敏度从 7.14%提高到 64.71%,从 14.29%提高到 45.83%,TERT C228T 从 28.57%提高到 100%,从 42.86%提高到 71.43%。Sonobiopsy 在空间靶向的大脑位置破坏 BBB,将肿瘤衍生的 DNA 释放到血液循环中,并能够及时采集 ctDNA。来自小鼠和猪 GBM 模型的综合证据强烈支持 sonobiopsy 的临床转化,用于脑癌的微创、时空可控和敏感的分子特征分析。