Suppr超能文献

一种合成三维石榴状聚多巴胺微球的简便方法。

A Facile Method to Synthesize 3D Pomegranate-like Polydopamine Microspheres.

作者信息

Ghorbani Farnaz, Ghalandari Behafarid, Liu Chaozong

机构信息

Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.

State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Bioeng Biotechnol. 2021 Dec 21;9:737074. doi: 10.3389/fbioe.2021.737074. eCollection 2021.

Abstract

Nanospheres have found versatile applications in the biomedical field; however, their possible harmful effects on immune and inflammatory systems are also a crucial concern. Inspired by a pomegranate structure, we demonstrated a novel structure for the nanostructured microspheres to overcome the drawbacks of nanospheres without compromising their merits. In this study, 3D pomegranate-like polydopamine microspheres (PDAMS) were synthesized by self-oxidative polymerization of dopamine hydrochloride. Herein, controlling the pH during polymerization led to synthesizing homogeneous agglomerated nano-sized spheres (400-2000 nm) and finally forming tunable and monodisperse micron-sized particles (21 µm) with uniform spherical shape porous microstructure. PDAMS interaction with the potential targets, Bone morphogenetic protein-2 (BMP2), Decorin, and Matrilin-1, was investigated via molecular calculations. Theoretical energy analysis revealed that PDAMS interaction with BMP2, Decorin, and Matrilin-1 is spontaneous, so that a protein layer formation on the PDAMS surface suggests application in bone and cartilage repair. It was also observed that PDAMS presented degradation within 4 weeks. Here, disappearance of the UV-VIS spectrum peak at 280 nm is accompanied by the degradation of catechol groups. Pomegranate-like PDAMS support the biomimetic formation of hydroxyapatite-like layers, making them appropriate candidates for hard tissue applications. Herein, the appearance of peaks in XRD spectrum at 31.37, 39.57, 45.21, and 50.13° attributed to hydroxyapatite-like layers formation. All these results demonstrated that self-oxidative polymerization under a controllable pH can be a green and straightforward technique for preparing the pomegranate-like PDAMS and providing an innovative basis for further pre-clinical and clinical investigations.

摘要

纳米球在生物医学领域有着广泛的应用;然而,它们对免疫和炎症系统可能产生的有害影响也是一个至关重要的问题。受石榴结构的启发,我们展示了一种用于纳米结构微球的新型结构,以克服纳米球的缺点,同时又不损害其优点。在本研究中,通过盐酸多巴胺的自氧化聚合合成了三维石榴状聚多巴胺微球(PDAMS)。在此,聚合过程中控制pH值可导致合成均匀聚集的纳米尺寸球体(400 - 2000纳米),最终形成具有均匀球形多孔微结构的可调谐且单分散的微米尺寸颗粒(21微米)。通过分子计算研究了PDAMS与潜在靶点骨形态发生蛋白-2(BMP2)、核心蛋白聚糖和基质金属蛋白酶-1的相互作用。理论能量分析表明,PDAMS与BMP2、核心蛋白聚糖和基质金属蛋白酶-1的相互作用是自发的,因此PDAMS表面形成的蛋白质层表明其可应用于骨和软骨修复。还观察到PDAMS在4周内出现降解。在此,280纳米处紫外可见光谱峰的消失伴随着邻苯二酚基团的降解。石榴状PDAMS支持类羟基磷灰石层的仿生形成,使其成为硬组织应用的合适候选材料。在此,X射线衍射光谱中在31.37、39.57、45.21和50.13°处出现的峰归因于类羟基磷灰石层的形成。所有这些结果表明,在可控pH值下的自氧化聚合可以是一种绿色且直接的技术,用于制备石榴状PDAMS,并为进一步的临床前和临床研究提供创新基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbaa/8724573/8cfaa2a7177e/fbioe-09-737074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验