Uner Onur Can, Kuru Halil Ibrahim, Cinbis R Gokberk, Tastan Oznur, Cicek A Ercument
IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):330-339. doi: 10.1109/TCBB.2022.3141103. Epub 2023 Feb 3.
Drug failures due to unforeseen adverse effects at clinical trials pose health risks for the participants and lead to substantial financial losses. Side effect prediction algorithms have the potential to guide the drug design process. LINCS L1000 dataset provides a vast resource of cell line gene expression data perturbed by different drugs and creates a knowledge base for context specific features. The state-of-the-art approach that aims at using context specific information relies on only the high-quality experiments in LINCS L1000 and discards a large portion of the experiments. In this study, our goal is to boost the prediction performance by utilizing this data to its full extent. We experiment with 5 deep learning architectures. We find that a multi-modal architecture produces the best predictive performance among multi-layer perceptron-based architectures when drug chemical structure (CS), and the full set of drug perturbed gene expression profiles (GEX) are used as modalities. Overall, we observe that the CS is more informative than the GEX. A convolutional neural network-based model that uses only SMILES string representation of the drugs achieves the best results and provides 13.0% macro-AUC and 3.1% micro-AUC improvements over the state-of-the-art. We also show that the model is able to predict side effect-drug pairs that are reported in the literature but was missing in the ground truth side effect dataset. DeepSide is available at http://github.com/OnurUner/DeepSide.
临床试验中因意外不良反应导致的药物失败会给参与者带来健康风险,并造成巨大的经济损失。副作用预测算法有可能指导药物设计过程。LINCS L1000数据集提供了大量受不同药物干扰的细胞系基因表达数据资源,并为特定背景特征创建了知识库。旨在使用特定背景信息的最先进方法仅依赖于LINCS L1000中的高质量实验,而丢弃了大部分实验。在本研究中,我们的目标是通过充分利用这些数据来提高预测性能。我们对5种深度学习架构进行了实验。我们发现,当药物化学结构(CS)和全套药物干扰基因表达谱(GEX)用作模态时,多模态架构在基于多层感知器的架构中产生最佳预测性能。总体而言,我们观察到CS比GEX更具信息性。仅使用药物的SMILES字符串表示的基于卷积神经网络的模型取得了最佳结果,与最先进技术相比,宏观AUC提高了13.0%,微观AUC提高了3.1%。我们还表明,该模型能够预测文献中报道但在真实副作用数据集中缺失的副作用-药物对。DeepSide可在http://github.com/OnurUner/DeepSide获取。