Suppr超能文献

通过基因组预测利用美国农业部豌豆种质资源库中的遗传多样性。

Harnessing Genetic Diversity in the USDA Pea Germplasm Collection Through Genomic Prediction.

作者信息

Bari Md Abdullah Al, Zheng Ping, Viera Indalecio, Worral Hannah, Szwiec Stephen, Ma Yu, Main Dorrie, Coyne Clarice J, McGee Rebecca J, Bandillo Nonoy

机构信息

Department of Plant Sciences, North Dakota State University, Fargo, ND, United States.

Department of Horticulture, Washington State University, Pullman, WA, United States.

出版信息

Front Genet. 2021 Dec 24;12:707754. doi: 10.3389/fgene.2021.707754. eCollection 2021.

Abstract

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder's toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction's potential to a set of 482 pea ( L.) accessions-genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components-for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy.

摘要

种质资源库的表型评估和有效利用可能耗时、费力且成本高昂。然而,随着下一代测序成本的大幅下降以及基因组选择被添加到植物育种者的工具箱中,我们现在能够更有效地挖掘大型种质资源库中的遗传多样性。在本研究中,我们对一组482份豌豆(L.)种质进行了基因组预测潜力的应用和评估,这些种质用30,600个单核苷酸多态性(SNP)标记进行了基因分型,并对种子产量和产量相关成分进行了表型分析,以加强从美国农业部豌豆种质资源库中选择种质。在一系列针对复杂性状的交叉验证方案中,评估了基因组预测模型以及影响预测能力的几个因素。不同的基因组预测模型给出了相似的结果,各性状的预测能力范围为0.23至0.60,没有一个模型在所有性状上都表现最佳。增加训练群体规模提高了大多数性状的预测能力,包括种子产量。随着标记数量的增加,预测能力提高并达到一个平台期,这可能是由于豌豆基因组中广泛的连锁不平衡。考虑群体结构效应并没有显著提高预测能力,但我们观察到种子产量有轻微改善。通过应用最佳的基因组预测模型(例如RR-BLUP),我们随后检查了已基因分型但未表型分析的种质的分布以及基因组估计育种值(GEBV)的可靠性。GEBV的分布表明,预计没有一个未表型分析的种质会表现出超出已表型分析种质的范围。具有更高可靠性的理想育种值可用于鉴定和筛选优良的种质资源。扩大训练集并将额外的正交信息(例如转录组学、代谢组学、生理性状等)纳入基因组预测框架可以提高预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90f6/8740293/480049be1373/fgene-12-707754-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验