Suppr超能文献

tRNA衍生内部片段(i-tRF-GlyGCC)与卵巢癌治疗结果及进展

tRNA-Derived Internal Fragment (i-tRF-GlyGCC) in Ovarian Cancer Treatment Outcome and Progression.

作者信息

Panoutsopoulou Konstantina, Dreyer Tobias, Dorn Julia, Obermayr Eva, Mahner Sven, Gorp Toon van, Braicu Ioana, Zeillinger Robert, Magdolen Viktor, Avgeris Margaritis, Scorilas Andreas

机构信息

Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece.

Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, 81675 Munich, Germany.

出版信息

Cancers (Basel). 2021 Dec 22;14(1):24. doi: 10.3390/cancers14010024.

Abstract

Epithelial ovarian cancer (EOC) remains a highly-lethal gynecological malignancy, characterized by frequent recurrence, chemotherapy resistance and poor 5-year survival. Identifying novel predictive molecular markers remains an overdue challenge in the disease's clinical management. Herein, in silico analysis of TCGA-OV highlighted the tRNA-derived internal fragment (i-tRF-GlyGCC) among the most abundant tRFs in ovarian tumors, while target prediction and gene ontology (GO) enrichment analysis predicted its implication in key biological processes. Thereafter, i-tRF-GlyGCC levels were quantified in a screening EOC ( = 98) and an institutionally-independent serous ovarian cancer (SOC) validation cohort ( = 100, OVCAD multicenter study). Disease progression and patient death were used as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and the clinical net benefit was estimated by decision curve analysis. The analysis highlighted the significant association of i-tRF-GlyGCC with advanced FIGO stages, suboptimal debulking and most importantly, with early progression and poor overall survival of EOC patients. The OVCAD validation cohort corroborated the unfavorable predictive value of i-tRF-GlyGCC in EOC. Ultimately, evaluation of i-tRF-GlyGCC with the established/clinically used prognostic markers offered superior patient risk-stratification and enhanced clinical benefit in EOC prognosis. In conclusion, i-tRF-GlyGCC assessment could aid towards personalized prognosis and support precision medicine decisions in EOC.

摘要

上皮性卵巢癌(EOC)仍然是一种高度致命的妇科恶性肿瘤,其特征是频繁复发、化疗耐药且5年生存率低。识别新的预测性分子标志物仍然是该疾病临床管理中一项亟待解决的挑战。在此,对TCGA-OV数据库的计算机分析表明,tRNA衍生的内部片段(i-tRF-GlyGCC)是卵巢肿瘤中最丰富的tRF之一,而靶标预测和基因本体(GO)富集分析预测其参与关键生物学过程。此后,在一个筛查EOC队列(n = 98)和一个机构独立的浆液性卵巢癌(SOC)验证队列(n = 100,OVCAD多中心研究)中对i-tRF-GlyGCC水平进行了定量分析。将疾病进展和患者死亡作为生存分析的临床终点。通过自抽样分析进行内部验证,并通过决策曲线分析估计临床净效益。分析突出显示了i-tRF-GlyGCC与国际妇产科联盟(FIGO)晚期、减瘤不理想显著相关,最重要的是,与EOC患者的早期进展和总体生存不良相关。OVCAD验证队列证实了i-tRF-GlyGCC在EOC中具有不利的预测价值。最终,将i-tRF-GlyGCC与已确立的/临床使用的预后标志物进行评估,在EOC预后中提供了更好的患者风险分层并提高了临床效益。总之,i-tRF-GlyGCC评估有助于EOC的个性化预后,并支持精准医学决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d1/8750938/6d1e7674c483/cancers-14-00024-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验