Suppr超能文献

基于光学相干断层扫描图像,利用深度卷积神经网络进行眼病检测

Optical coherence tomography image based eye disease detection using deep convolutional neural network.

作者信息

Kumar Rakesh, Gupta Meenu

机构信息

Department of Computer Science and Engineering, Chandigarh University, Mohali, Punjab India.

出版信息

Health Inf Sci Syst. 2022 Jun 21;10(1):13. doi: 10.1007/s13755-022-00182-y. eCollection 2022 Dec.

Abstract

Over the past few decades, health care industries and medical practitioners faced a lot of obstacles to diagnosing medical-related problems due to inadequate technology and availability of equipment. In the present era, computer science technologies such as IoT, Cloud Computing, Artificial Intelligence and its allied techniques, etc. play a crucial role in the identification of medical diseases, especially in the domain of Ophthalmology. Despite this, ophthalmologists have to perform the various disease diagnosis task manually which is time-consuming and the chances of error are also very high because some of the abnormalities of eye diseases possess the same symptoms. Furthermore, multiple autonomous systems also exist to categorize the diseases but their prediction rate does not accomplish state-of-art accuracy. In the proposed approach by implementing the concept of Attention, Transfer Learning with the Deep Convolution Neural Network, the model accomplished an accuracy of 97.79% and 95.6% on the training and testing data respectively. This autonomous model efficiently classifies the various oscular disorders namely Choroidal Neovascularization, Diabetic Macular Edema, Drusen from the Optical Coherence Tomography images. It may provide a realistic solution to the healthcare sector to bring down the ophthalmologist burden in the screening of Diabetic Retinopathy.

摘要

在过去几十年里,由于技术不足和设备可用性问题,医疗保健行业和医疗从业者在诊断与医疗相关的问题上面临诸多障碍。在当今时代,物联网、云计算、人工智能及其相关技术等计算机科学技术在识别医疗疾病方面发挥着关键作用,尤其是在眼科领域。尽管如此,眼科医生仍需手动执行各种疾病诊断任务,这既耗时,而且出错几率也非常高,因为一些眼部疾病的异常症状相同。此外,也存在多个用于疾病分类的自主系统,但其预测率并未达到当前的先进准确率。在所提出的方法中,通过实施注意力概念、结合深度卷积神经网络进行迁移学习,该模型在训练数据和测试数据上分别实现了97.79%和95.6%的准确率。这个自主模型能够有效地从光学相干断层扫描图像中对各种眼部疾病进行分类,即脉络膜新生血管、糖尿病性黄斑水肿、玻璃膜疣。它可能为医疗保健行业提供一个切实可行的解决方案,以减轻眼科医生在糖尿病视网膜病变筛查中的负担。

相似文献

4
Fully automated detection of retinal disorders by image-based deep learning.基于图像的深度学习技术对视网膜疾病进行全自动检测。
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
5
Artificial intelligence in ophthalmology.人工智能在眼科学中的应用。
Rom J Ophthalmol. 2023 Jul-Sep;67(3):207-213. doi: 10.22336/rjo.2023.37.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验