Suppr超能文献

概念化公平:医疗算法和健康公平的三个支柱。

Conceptualising fairness: three pillars for medical algorithms and health equity.

机构信息

Centre for Addiction and Mental Health, Toronto, Ontario, Canada

Department of Anthropology, University of Toronto, Toronto, Ontario, Canada.

出版信息

BMJ Health Care Inform. 2022 Jan;29(1). doi: 10.1136/bmjhci-2021-100459.

Abstract

OBJECTIVES

Fairness is a core concept meant to grapple with different forms of discrimination and bias that emerge with advances in Artificial Intelligence (eg, machine learning, ML). Yet, claims to fairness in ML discourses are often vague and contradictory. The response to these issues within the scientific community has been technocratic. Studies either measure (mathematically) competing definitions of fairness, and/or recommend a range of governance tools (eg, fairness checklists or guiding principles). To advance efforts to operationalise fairness in medicine, we synthesised a broad range of literature.

METHODS

We conducted an environmental scan of English language literature on fairness from 1960-July 31, 2021. Electronic databases Medline, PubMed and Google Scholar were searched, supplemented by additional hand searches. Data from 213 selected publications were analysed using rapid framework analysis. Search and analysis were completed in two rounds: to explore previously identified issues (a priori), as well as those emerging from the analysis (de novo).

RESULTS

Our synthesis identified 'Three Pillars for Fairness': transparency, impartiality and inclusion. We draw on these insights to propose a multidimensional conceptual framework to guide empirical research on the operationalisation of fairness in healthcare.

DISCUSSION

We apply the conceptual framework generated by our synthesis to risk assessment in psychiatry as a case study. We argue that any claim to fairness must reflect critical assessment and ongoing social and political deliberation around these three pillars with a range of stakeholders, including patients.

CONCLUSION

We conclude by outlining areas for further research that would bolster ongoing commitments to fairness and health equity in healthcare.

摘要

目的

公平是一个核心概念,旨在解决人工智能(例如机器学习)进步所带来的各种形式的歧视和偏见。然而,机器学习话语中对公平的主张往往是模糊和矛盾的。科学界对此问题的回应是技术统治。研究要么衡量(数学上)公平的竞争定义,要么推荐一系列治理工具(例如,公平检查表或指导原则)。为了推进医学中公平的实施工作,我们对 1960 年至 2021 年 7 月 31 日期间的英语文献进行了广泛的综述。检索了 Medline、PubMed 和 Google Scholar 等电子数据库,并辅以额外的手工检索。使用快速框架分析对 213 篇选定出版物中的数据进行了分析。搜索和分析分两轮进行:第一轮是为了探索先前确定的问题(事先确定),第二轮是为了从分析中发现新的问题(新发现)。

结果

我们的综合研究确定了“公平的三个支柱”:透明度、公正性和包容性。我们借鉴这些见解,提出了一个多维概念框架,以指导医疗保健中公平实施的实证研究。

讨论

我们将我们的综合研究产生的概念框架应用于精神病学中的风险评估作为案例研究。我们认为,任何公平主张都必须反映对这三个支柱的批判性评估以及包括患者在内的一系列利益相关者的持续社会和政治审议。

结论

我们最后概述了进一步研究的领域,这些研究将加强医疗保健中对公平和健康公平的持续承诺。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc8/8753410/0e49352533c0/bmjhci-2021-100459f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验