Suppr超能文献

使用深度学习对基于智能手机的双模态口腔发育异常和恶性肿瘤图像进行自动分类。

Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning.

作者信息

Song Bofan, Sunny Sumsum, Uthoff Ross D, Patrick Sanjana, Suresh Amritha, Kolur Trupti, Keerthi G, Anbarani Afarin, Wilder-Smith Petra, Kuriakose Moni Abraham, Birur Praveen, Rodriguez Jeffrey J, Liang Rongguang

机构信息

College of Optical Sciences, The University of Arizona, Tucson, AZ, USA.

Mazumdar Shaw Medical Centre, Bangalore, India.

出版信息

Biomed Opt Express. 2018 Oct 10;9(11):5318-5329. doi: 10.1364/BOE.9.005318. eCollection 2018 Nov 1.

Abstract

With the goal to screen high-risk populations for oral cancer in low- and middle-income countries (LMICs), we have developed a low-cost, portable, easy to use smartphone-based intraoral dual-modality imaging platform. In this paper we present an image classification approach based on autofluorescence and white light images using deep learning methods. The information from the autofluorescence and white light image pair is extracted, calculated, and fused to feed the deep learning neural networks. We have investigated and compared the performance of different convolutional neural networks, transfer learning, and several regularization techniques for oral cancer classification. Our experimental results demonstrate the effectiveness of deep learning methods in classifying dual-modal images for oral cancer detection.

摘要

为了在低收入和中等收入国家(LMICs)筛查口腔癌的高危人群,我们开发了一种低成本、便携式、易于使用的基于智能手机的口腔双模态成像平台。在本文中,我们提出了一种基于深度学习方法的利用自发荧光和白光图像的图像分类方法。从自发荧光和白光图像对中提取、计算并融合信息,以输入深度学习神经网络。我们研究并比较了不同卷积神经网络、迁移学习和几种正则化技术在口腔癌分类中的性能。我们的实验结果证明了深度学习方法在对用于口腔癌检测的双模态图像进行分类方面的有效性。

相似文献

1
Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning.
Biomed Opt Express. 2018 Oct 10;9(11):5318-5329. doi: 10.1364/BOE.9.005318. eCollection 2018 Nov 1.
2
Mobile-based oral cancer classification for point-of-care screening.
J Biomed Opt. 2021 Jun;26(6). doi: 10.1117/1.JBO.26.6.065003.
5
Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
Comput Med Imaging Graph. 2017 Nov;61:2-13. doi: 10.1016/j.compmedimag.2017.06.001. Epub 2017 Jun 16.
6
Skin lesion classification with ensembles of deep convolutional neural networks.
J Biomed Inform. 2018 Oct;86:25-32. doi: 10.1016/j.jbi.2018.08.006. Epub 2018 Aug 10.
7
A novel fused convolutional neural network for biomedical image classification.
Med Biol Eng Comput. 2019 Jan;57(1):107-121. doi: 10.1007/s11517-018-1819-y. Epub 2018 Jul 12.
8
White blood cells identification system based on convolutional deep neural learning networks.
Comput Methods Programs Biomed. 2019 Jan;168:69-80. doi: 10.1016/j.cmpb.2017.11.015. Epub 2017 Nov 16.
9
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.
10
Deep Learning Based Analysis of Histopathological Images of Breast Cancer.
Front Genet. 2019 Feb 19;10:80. doi: 10.3389/fgene.2019.00080. eCollection 2019.

引用本文的文献

2
Screening of oral potentially malignant disorders and oral cancer using deep learning models.
Sci Rep. 2025 May 23;15(1):17949. doi: 10.1038/s41598-025-02802-5.
4
Efficacy of Autofluorescence in Detection of Tobacco-associated Oral Mucosal Lesions - A Systematic Review.
Ann Maxillofac Surg. 2024 Jul-Dec;14(2):212-220. doi: 10.4103/ams.ams_128_24. Epub 2024 Nov 18.
5
Artificial Intelligence in Oral Cancer: A Comprehensive Scoping Review of Diagnostic and Prognostic Applications.
Diagnostics (Basel). 2025 Jan 24;15(3):280. doi: 10.3390/diagnostics15030280.
6
Integrating artificial intelligence with smartphone-based imaging for cancer detection in vivo.
Biosens Bioelectron. 2025 Mar 1;271:116982. doi: 10.1016/j.bios.2024.116982. Epub 2024 Nov 21.
8
Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions.
Curr Oncol. 2024 Sep 6;31(9):5255-5290. doi: 10.3390/curroncol31090389.
10
Enhancing oral squamous cell carcinoma detection: a novel approach using improved EfficientNet architecture.
BMC Oral Health. 2024 May 23;24(1):601. doi: 10.1186/s12903-024-04307-5.

本文引用的文献

2
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
3
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging.
J Biomed Opt. 2017 Jun 1;22(6):60503. doi: 10.1117/1.JBO.22.6.060503.
4
Low Survival Rates of Oral and Oropharyngeal Squamous Cell Carcinoma.
Int J Dent. 2017;2017:5815493. doi: 10.1155/2017/5815493. Epub 2017 May 30.
5
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
6
The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012.
CA Cancer J Clin. 2017 Jan;67(1):51-64. doi: 10.3322/caac.21384. Epub 2016 Oct 19.
8
Applications of Deep Learning in Biomedicine.
Mol Pharm. 2016 May 2;13(5):1445-54. doi: 10.1021/acs.molpharmaceut.5b00982. Epub 2016 Mar 29.
9
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
10
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验