Suppr超能文献

一种通过使用抗噬菌体细菌来创建高效噬菌体鸡尾酒的新方法。

A Novel Method to Create Efficient Phage Cocktails via Use of Phage-Resistant Bacteria.

机构信息

Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Appl Environ Microbiol. 2022 Mar 22;88(6):e0232321. doi: 10.1128/aem.02323-21. Epub 2022 Jan 26.

Abstract

The rapid antiphage mutation of pathogens is a big challenge often encountered in the application of phages in aquaculture, animal husbandry, and human disease prevention. A cocktail composed of phages with different infection strategies can better suppress the antiphage resistance of pathogens. However, randomly selecting phages with different infection strategies is time-consuming and labor intensive. Here, we verified that using a resistant pathogen quickly evolved under single phage infection, as the new host can easily obtain phages with different infection strategies. We randomly isolated two lytic phages (i.e., Va1 and Va2) that infect the opportunistic pathogen Vibrio alginolyticus. Whether they were used alone or in combination, the pathogen easily gained resistance. Using a mutated pathogen resistant to Va1 as a new host, a third lytic phage Va3 was isolated. These three phages have a similar infection cycle and lytic ability but quite different morphologies and genome information. Notably, phage Va3 is a jumbo phage containing a larger and more complex genome (240 kb) than Va1 and Va2. Furthermore, the 34 tRNAs and multiple genes encoding receptor binding proteins and NAD synthesis proteins in the Va3 genome implicated its quite different infection strategy from Va1 and Va2. Although the wild-type pathogen could still readily evolve resistance under single phage infection by Va3, when Va3 was used in combination with Va1 and Va2, pathogen resistance was strongly suppressed. This study provides a novel approach for rapid isolation of phages with different infection strategies, which will be highly beneficial when designing effective phage cocktails. The rapid antiphage mutation of pathogens is a big challenge often encountered in phage therapy. Using a cocktail composed of phages with different infection strategies can better overcome this problem. However, randomly selecting phages with different infection strategies is time-consuming and labor intensive. To address this problem, we developed a method to efficiently obtain phages with disparate infection strategies. The trick is to use the characteristics of the pathogenic bacteria that are prone to develop resistance to single phage infection to rapidly obtain the antiphage variant of the pathogen. Using this antiphage variant as the host results in other phages with different infection strategies being efficiently isolated. We also verified the reliability of this method by demonstrating the ideal phage control effects on two pathogens and thus revealed its potential importance in the development of phage therapies.

摘要

病原体的快速抗噬菌体突变是噬菌体在水产养殖、畜牧业和人类疾病预防中的应用中经常遇到的一个大挑战。由具有不同感染策略的噬菌体组成的鸡尾酒可以更好地抑制病原体的抗噬菌体抗性。然而,随机选择具有不同感染策略的噬菌体既耗时又费力。在这里,我们验证了使用在单一噬菌体感染下快速进化的抗性病原体作为新宿主可以很容易地获得具有不同感染策略的噬菌体。我们随机分离了两种裂解噬菌体(即 Va1 和 Va2),它们感染机会性病原体弧菌 alginolyticus。无论是单独使用还是组合使用,病原体都很容易产生抗性。使用对 Va1 具有抗性的突变病原体作为新宿主,分离出第三种裂解噬菌体 Va3。这三种噬菌体具有相似的感染周期和裂解能力,但形态和基因组信息却大不相同。值得注意的是,噬菌体 Va3 是一种巨型噬菌体,其基因组(240kb)比 Va1 和 Va2 更大、更复杂。此外,Va3 基因组中的 34 个 tRNA 和多个编码受体结合蛋白和 NAD 合成蛋白的基因表明其与 Va1 和 Va2 的感染策略截然不同。尽管野生型病原体在单独使用 Va3 感染时仍然很容易产生抗性,但当 Va3 与 Va1 和 Va2 联合使用时,病原体的抗性受到了强烈抑制。本研究提供了一种快速分离具有不同感染策略噬菌体的新方法,这对于设计有效的噬菌体鸡尾酒将非常有益。病原体的快速抗噬菌体突变是噬菌体治疗中经常遇到的一个大挑战。使用由具有不同感染策略的噬菌体组成的鸡尾酒可以更好地克服这个问题。然而,随机选择具有不同感染策略的噬菌体既耗时又费力。为了解决这个问题,我们开发了一种高效获得具有不同感染策略噬菌体的方法。诀窍是利用致病性细菌易对单一噬菌体感染产生抗性的特点,快速获得病原体的抗噬菌体变体。将这种抗噬菌体变体作为宿主,可有效地分离出其他具有不同感染策略的噬菌体。我们还通过证明该方法对两种病原体具有理想的噬菌体控制效果,验证了该方法的可靠性,从而揭示了其在噬菌体治疗开发中的重要性。

相似文献

1
一种通过使用抗噬菌体细菌来创建高效噬菌体鸡尾酒的新方法。
Appl Environ Microbiol. 2022 Mar 22;88(6):e0232321. doi: 10.1128/aem.02323-21. Epub 2022 Jan 26.
2
从污水源中分离出针对多重耐药菌及其噬菌体抗性变体的烈性噬菌体并进行表型特征分析。
Infect Drug Resist. 2024 Jan 25;17:293-303. doi: 10.2147/IDR.S441085. eCollection 2024.
3
噬菌体鸡尾酒限制. 的生长。
mSystems. 2022 Aug 30;7(4):e0001922. doi: 10.1128/msystems.00019-22. Epub 2022 Jun 28.
4
噬菌体鸡尾酒抗性肠炎沙门氏菌血清型肠炎亚种的适应性权衡导致抗生素易感性增加和毒力降低。
Microbiol Spectr. 2022 Oct 26;10(5):e0291422. doi: 10.1128/spectrum.02914-22. Epub 2022 Sep 27.
5
噬菌体制剂控制活饵料中 Algicidal Vibrio 在幼虫养殖前的数量。
J Appl Microbiol. 2024 May 1;135(5). doi: 10.1093/jambio/lxae115.
10
用于防治白菜软腐病的噬菌体制剂。
Appl Microbiol Biotechnol. 2024 Dec;108(1):11. doi: 10.1007/s00253-023-12881-x. Epub 2023 Dec 30.

引用本文的文献

1
噬菌体疗法:对抗细菌对噬菌体耐药性的演变
Viruses. 2025 Aug 8;17(8):1094. doi: 10.3390/v17081094.
2
碳水化合物的作用:影响金黄色葡萄球菌噬菌体的感染与增殖
BMC Microbiol. 2025 Aug 5;25(1):483. doi: 10.1186/s12866-025-04219-6.
4
海洋噬菌体作为下一代治疗药物:对抗菌潜力与应用的见解
Viruses. 2025 Jul 10;17(7):971. doi: 10.3390/v17070971.
6
淡水和咸水养殖物种中的噬菌体疗法
Microorganisms. 2025 Apr 6;13(4):831. doi: 10.3390/microorganisms13040831.
8
超越抗生素:探索噬菌体及噬菌体疗法的潜力
Phage (New Rochelle). 2024 Dec 18;5(4):186-202. doi: 10.1089/phage.2024.0005. eCollection 2024 Dec.
9
噬菌体联合治疗耐药混合细菌感染方法的新见解
Phage (New Rochelle). 2024 Dec 18;5(4):203-222. doi: 10.1089/phage.2024.0011. eCollection 2024 Dec.
10
广谱噬菌体vB_ESM-pEJ01的特性及其对生榨果蔬汁中志贺毒素产生菌的抗菌效果
Microorganisms. 2025 Jan 7;13(1):103. doi: 10.3390/microorganisms13010103.

本文引用的文献

1
噬菌体抗性及其通过策略性治疗鸡尾酒配方的预防
Antibiotics (Basel). 2021 Feb 2;10(2):145. doi: 10.3390/antibiotics10020145.
2
巨型噬菌体:核心功能与生物冲突适应的比较基因组概述。
Viruses. 2021 Jan 5;13(1):63. doi: 10.3390/v13010063.
3
感染、裂解并促进新生生物膜形成的噬菌体Thanatos的分离与鉴定
Front Microbiol. 2020 Sep 18;11:573260. doi: 10.3389/fmicb.2020.573260. eCollection 2020.
4
一种新型含有溶原相关基因的弧菌噬菌体 vB_VcaS_HC 对致病性细菌具有强烈的裂解能力。
Virol Sin. 2021 Apr;36(2):281-290. doi: 10.1007/s12250-020-00271-w. Epub 2020 Aug 7.
5
标准化噬菌体纯化用于个性化噬菌体治疗。
Nat Protoc. 2020 Sep;15(9):2867-2890. doi: 10.1038/s41596-020-0346-0. Epub 2020 Jul 24.
6
一种用于抑制噬菌体抗性出现的噬菌体鸡尾酒的开发
Front Microbiol. 2020 Mar 4;11:327. doi: 10.3389/fmicb.2020.00327. eCollection 2020.
9
PA5oct 巨型噬菌体影响浮游生物和生物膜种群并降低其宿主毒力。
Viruses. 2019 Nov 23;11(12):1089. doi: 10.3390/v11121089.
10
一种新型感染 并具有强复制能力的底栖噬菌体。
Viruses. 2019 Nov 19;11(11):1081. doi: 10.3390/v11111081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验