Suppr超能文献

稀有事件荟萃分析中效应异质性的评估。

Estimation of Effect Heterogeneity in Rare Events Meta-Analysis.

机构信息

Institute of Psychology, University of Münster, Fliednerstr. 21, 48149,  Münster, Germany.

University of Southampton, Southampton, UK.

出版信息

Psychometrika. 2022 Sep;87(3):1081-1102. doi: 10.1007/s11336-021-09835-5. Epub 2022 Feb 8.

Abstract

The paper outlines several approaches for dealing with meta-analyses of count outcome data. These counts are the accumulation of occurred events, and these events might be rare, so a special feature of the meta-analysis is dealing with low counts including zero-count studies. Emphasis is put on approaches which are state of the art for count data modelling including mixed log-linear (Poisson) and mixed logistic (binomial) regression as well as nonparametric mixture models for count data of Poisson and binomial type. A simulation study investigates the performance and capability of discrete mixture models in estimating effect heterogeneity. The approaches are exemplified on a meta-analytic case study investigating the acceptance of bibliotherapy.

摘要

本文概述了处理计数结果数据荟萃分析的几种方法。这些计数是发生事件的累积,并且这些事件可能很少见,因此荟萃分析的一个特点是处理包括零计数研究在内的低计数。重点介绍了计数数据建模的最新方法,包括混合对数线性(泊松)和混合逻辑(二项)回归以及泊松和二项式计数数据的非参数混合模型。一项模拟研究调查了离散混合模型在估计效应异质性方面的性能和能力。这些方法在一个关于接受心理治疗的荟萃分析案例研究中得到了举例说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d82c/9433364/08292f976d59/11336_2021_9835_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验