Suppr超能文献

热门 3D 打印微流控材料与体外酶反应的兼容性。

Compatibility of Popular Three-Dimensional Printed Microfluidics Materials with In Vitro Enzymatic Reactions.

机构信息

Mork Family Department of Chemical Engineering and Materials Science, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States.

Department of Chemistry, University of Southern California, 3620 McClintock Ave, SGM 418, Los Angeles, California 90089, United States.

出版信息

ACS Appl Bio Mater. 2022 Feb 21;5(2):818-824. doi: 10.1021/acsabm.1c01180. Epub 2022 Feb 9.

Abstract

3D printed microfluidics offer several advantages over conventional planar microfabrication techniques including fabrication of 3D microstructures, rapid prototyping, and inertness. While 3D printed materials have been studied for their biocompatibility in cell and tissue culture applications, their compatibility for in vitro biochemistry and molecular biology has not been systematically investigated. Here, we evaluate the compatibility of several common enzymatic reactions in the context of 3D-printed microfluidics: (1) polymerase chain reaction (PCR), (2) T7 in vitro transcription, (3) mammalian in vitro translation, and (4) reverse transcription. Surprisingly, all the materials tested significantly inhibit one or more of these in vitro enzymatic reactions. Inclusion of BSA mitigates only some of these inhibitory effects. Overall, inhibition appears to be due to a combination of the surface properties of the resins as well as soluble components (leachate) originating in the matrix.

摘要

3D 打印微流控技术相对于传统的平面微加工技术具有许多优势,包括制造 3D 微结构、快速原型制作和惰性。虽然已经研究了 3D 打印材料在细胞和组织培养应用中的生物相容性,但它们在体外生物化学和分子生物学方面的兼容性尚未得到系统研究。在这里,我们评估了几种常见酶促反应在 3D 打印微流控中的兼容性:(1)聚合酶链反应(PCR),(2)T7 体外转录,(3)哺乳动物体外翻译,以及(4)逆转录。令人惊讶的是,所有测试的材料都显著抑制了这些体外酶促反应中的一种或多种。BSA 的包含仅减轻了其中一些抑制作用。总体而言,抑制似乎是由于树脂的表面特性以及源自基质的可溶性成分(浸出物)的组合所致。

相似文献

1
Compatibility of Popular Three-Dimensional Printed Microfluidics Materials with In Vitro Enzymatic Reactions.
ACS Appl Bio Mater. 2022 Feb 21;5(2):818-824. doi: 10.1021/acsabm.1c01180. Epub 2022 Feb 9.
2
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
PLoS One. 2020 Oct 28;15(10):e0240237. doi: 10.1371/journal.pone.0240237. eCollection 2020.
3
3D printed mold leachates in PDMS microfluidic devices.
Sci Rep. 2020 Jan 22;10(1):994. doi: 10.1038/s41598-020-57816-y.
4
Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
Biosensors (Basel). 2024 Jun 8;14(6):301. doi: 10.3390/bios14060301.
6
Biocompatibility of Blank, Post-Processed and Coated 3D Printed Resin Structures with Electrogenic Cells.
Biosensors (Basel). 2020 Oct 22;10(11):152. doi: 10.3390/bios10110152.
7
Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
Anal Chim Acta. 2022 May 29;1209:339842. doi: 10.1016/j.aca.2022.339842. Epub 2022 Apr 30.
9
DNA Assembly in 3D Printed Fluidics.
PLoS One. 2015 Dec 30;10(12):e0143636. doi: 10.1371/journal.pone.0143636. eCollection 2015.
10
3D printed microfluidic mixer for point-of-care diagnosis of anemia.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:267-270. doi: 10.1109/EMBC.2016.7590691.

引用本文的文献

2
Parylene-C Coating Protects Resin-3D-Printed Devices from Material Erosion and Prevents Cytotoxicity toward Primary Cells.
ACS Appl Bio Mater. 2023 Aug 21;6(8):3079-3083. doi: 10.1021/acsabm.3c00444. Epub 2023 Aug 3.
3
Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
Anal Chim Acta. 2022 May 29;1209:339842. doi: 10.1016/j.aca.2022.339842. Epub 2022 Apr 30.

本文引用的文献

2
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
PLoS One. 2020 Oct 28;15(10):e0240237. doi: 10.1371/journal.pone.0240237. eCollection 2020.
3
Enabling Flow-Based Kinetic Off-Rate Selections Using a Microfluidic Enrichment Device.
Anal Chem. 2020 Aug 4;92(15):10218-10222. doi: 10.1021/acs.analchem.0c01867. Epub 2020 Jul 14.
4
Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing.
Eur Biophys J. 2019 Sep;48(6):549-558. doi: 10.1007/s00249-019-01383-2. Epub 2019 Jul 20.
7
An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers.
Biosens Bioelectron. 2018 Dec 30;122:104-112. doi: 10.1016/j.bios.2018.09.040. Epub 2018 Sep 13.
8
Advances in microfluidic devices made from thermoplastics used in cell biology and analyses.
Biomicrofluidics. 2017 Oct 24;11(5):051502. doi: 10.1063/1.4998604. eCollection 2017 Sep.
9
Recent advances of controlled drug delivery using microfluidic platforms.
Adv Drug Deliv Rev. 2018 Mar 15;128:3-28. doi: 10.1016/j.addr.2017.09.013. Epub 2017 Sep 15.
10
Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
Lab Chip. 2017 Aug 22;17(17):2899-2909. doi: 10.1039/c7lc00644f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验