Martina-Perez Simon, Simpson Matthew J, Baker Ruth E
Mathematical Institute, University of Oxford, Oxford, UK.
School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
Proc Math Phys Eng Sci. 2021 Oct;477(2254):20210426. doi: 10.1098/rspa.2021.0426. Epub 2021 Oct 27.
Equation learning aims to infer differential equation models from data. While a number of studies have shown that differential equation models can be successfully identified when the data are sufficiently detailed and corrupted with relatively small amounts of noise, the relationship between observation noise and uncertainty in the learned differential equation models remains unexplored. We demonstrate that for noisy datasets there exists great variation in both the structure of the learned differential equation models and their parameter values. We explore how to exploit multiple datasets to quantify uncertainty in the learned models, and at the same time draw mechanistic conclusions about the target differential equations. We showcase our results using simulation data from a relatively straightforward agent-based model (ABM) which has a well-characterized partial differential equation description that provides highly accurate predictions of averaged ABM behaviours in relevant regions of parameter space. Our approach combines equation learning methods with Bayesian inference approaches so that a quantification of uncertainty can be given by the posterior parameter distribution of the learned model.
方程学习旨在从数据中推断微分方程模型。虽然许多研究表明,当数据足够详细且噪声量相对较小时,微分方程模型可以被成功识别,但观测噪声与学习到的微分方程模型中的不确定性之间的关系仍未得到探索。我们证明,对于有噪声的数据集,学习到的微分方程模型的结构及其参数值都存在很大差异。我们探索如何利用多个数据集来量化学习到的模型中的不确定性,同时得出关于目标微分方程的机理结论。我们使用来自一个相对简单的基于智能体的模型(ABM)的模拟数据展示了我们的结果,该模型具有一个特征明确的偏微分方程描述,能在参数空间的相关区域对平均ABM行为提供高度准确的预测。我们的方法将方程学习方法与贝叶斯推理方法相结合,以便通过学习到的模型的后验参数分布来给出不确定性的量化。