Cedars-Sinai Medical Center and University of California, Los Angeles.
Cedars-Sinai Medical Center, Los Angeles, California.
Arthritis Care Res (Hoboken). 2023 Feb;75(2):365-372. doi: 10.1002/acr.24868. Epub 2022 Oct 31.
Patient communities use social media for peer support and information seeking. This study assessed the feasibility of using public patient-generated health data from the social network Twitter to identify diverse lupus patients and gather their perspectives about disease symptoms and medications.
We extracted public lupus-related Twitter messages (n = 47,715 tweets) in English posted by users (n = 8,446) in the US between September 1, 2017 and October 31, 2018. We analyzed the data to describe lupus patients and the expressed themes (symptoms and medications). Two independent coders analyzed the data; Cohen's kappa coefficient was used to ensure interrater reliability. Differences in symptom and medication expressions were analyzed using 2-tailed Z tests and a combination of 1-way analysis of variance tests and unpaired t-tests.
We found that lupus patients on Twitter are diverse in gender and race: approximately one-third (34.64%, 62 of 179) were persons of color (POCs), and 85.47% were female. The expressed disease symptoms and medications varied significantly by gender and race. Most of our findings correlated with documented clinical observations, e.g., expressions of general pain (8.39%, 709 of 8,446), flares (6.05%, 511 of 8,446), and fatigue (4.18%, 353 of 8,446). However, our data also revealed less well-known patient observations, e.g., possible racial disparities within ocular manifestations of lupus.
Our results indicate that social media surveillance can provide valuable data of clinical relevance from the perspective of lupus patients. The medical community has the opportunity to harness this information to inform the patient-centered care within underrepresented patient groups, such as POCs.
患者群体利用社交媒体寻求同伴支持和获取信息。本研究评估了使用社交网络 Twitter 上的公共患者生成健康数据来识别不同狼疮患者并收集他们对疾病症状和药物的看法的可行性。
我们提取了 2017 年 9 月 1 日至 2018 年 10 月 31 日期间,美国用户(n=8446)在 Twitter 上发布的与狼疮相关的公共英语推文(n=47715)。我们对数据进行分析,以描述狼疮患者和表达的主题(症状和药物)。两名独立的编码员对数据进行分析;使用 Cohen's kappa 系数确保评分者间的可靠性。使用双侧 Z 检验和单因素方差分析检验和未配对 t 检验的组合分析症状和药物表达的差异。
我们发现,Twitter 上的狼疮患者在性别和种族上存在多样性:约三分之一(34.64%,62/179)为有色人种(POC),85.47%为女性。表达的疾病症状和药物因性别和种族而异。我们的大多数发现与文献记载的临床观察相符,例如普遍疼痛(8.39%,709/8446)、发作(6.05%,511/8446)和疲劳(4.18%,353/8446)的表达。然而,我们的数据还揭示了一些不太为人知的患者观察结果,例如狼疮眼部表现中可能存在种族差异。
我们的结果表明,社交媒体监测可以从狼疮患者的角度提供有临床相关性的宝贵数据。医学界有机会利用这些信息为代表性不足的患者群体(如 POC)提供以患者为中心的护理。