文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

针对 COVID-19 的潜在治疗方法:从药物化学角度的综合概述。

Approaches to the Potential Therapy of COVID-19: A General Overview from the Medicinal Chemistry Perspective.

机构信息

Organic and Medicinal Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense, 28040 Madrid, Spain.

出版信息

Molecules. 2022 Jan 20;27(3):658. doi: 10.3390/molecules27030658.


DOI:10.3390/molecules27030658
PMID:35163923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8838458/
Abstract

In spite of advances in vaccination, control of the COVID-19 pandemic will require the use of pharmacological treatments against SARS-CoV2. Their development needs to consider the existence of two phases in the disease, namely the viral infection and the inflammatory stages. The main targets for antiviral therapeutic intervention are: (a) viral proteins, including the spike (S) protein characteristic of the viral cover and the viral proteases in charge of processing the polyprotein arising from viral genome translation; (b) host proteins, such as those involved in the processes related to viral entry into the host cell and the release of the viral genome inside the cell, the elongation factor eEF1A and importins. The use of antivirals targeted at host proteins is less developed but it has the potential advantage of not being affected by mutations in the genome of the virus and therefore being active against all its variants. Regarding drugs that address the hyperinflammatory phase of the disease triggered by the so-called cytokine storm, the following strategies are particularly relevant: (a) drugs targeting JAK kinases; (b) sphingosine kinase 2 inhibitors; (c) antibodies against interleukin 6 or its receptor; (d) use of the traditional anti-inflammatory corticosteroids.

摘要

尽管疫苗接种取得了进展,但控制 COVID-19 大流行仍将需要使用针对 SARS-CoV2 的药物治疗。其开发需要考虑疾病存在两个阶段,即病毒感染和炎症阶段。抗病毒治疗干预的主要目标是:(a) 病毒蛋白,包括病毒包膜特征性的刺突 (S) 蛋白和负责处理源自病毒基因组翻译的多蛋白的病毒蛋白酶;(b) 宿主蛋白,如与病毒进入宿主细胞和细胞内释放病毒基因组相关的过程、延伸因子 eEF1A 和导入蛋白。针对宿主蛋白的抗病毒药物的使用尚未得到充分发展,但它具有不受病毒基因组突变影响的潜在优势,因此对其所有变体均有效。关于针对所谓的细胞因子风暴引发的疾病过度炎症阶段的药物,以下策略特别相关:(a) 靶向 JAK 激酶的药物;(b) 鞘氨醇激酶 2 抑制剂;(c) 针对白细胞介素 6 或其受体的抗体;(d) 使用传统的抗炎皮质类固醇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/99ca9638575b/molecules-27-00658-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/c7d58dc7b2fa/molecules-27-00658-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/ee8220871fd8/molecules-27-00658-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/11cc87e88ae9/molecules-27-00658-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/57a5a1dcbf71/molecules-27-00658-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/8ae83d91fdae/molecules-27-00658-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/b99cecb28613/molecules-27-00658-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d2e3703b7cd3/molecules-27-00658-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/5287047ca6dc/molecules-27-00658-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/dbb7540d4069/molecules-27-00658-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d0fa619c3ad7/molecules-27-00658-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d35f681f05a4/molecules-27-00658-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/8bb65d8f88e5/molecules-27-00658-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/7c2063d438ea/molecules-27-00658-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/fb37503fe7df/molecules-27-00658-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/2b8fdbf1f76f/molecules-27-00658-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/8803e7ab038f/molecules-27-00658-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d70eeec276f6/molecules-27-00658-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/3b84375f1fd2/molecules-27-00658-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/5cefd8f478ad/molecules-27-00658-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/9b2f5ad0abe8/molecules-27-00658-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/922640e689e1/molecules-27-00658-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d50862f7493f/molecules-27-00658-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/bb23ff96c85f/molecules-27-00658-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/f797e40c7207/molecules-27-00658-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/6ee21714c414/molecules-27-00658-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/f8493bebd1ca/molecules-27-00658-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/684d1f4659e4/molecules-27-00658-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/ecbb12ae2d99/molecules-27-00658-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/96c3f819459d/molecules-27-00658-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/7fe0d48296cb/molecules-27-00658-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/99ca9638575b/molecules-27-00658-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/c7d58dc7b2fa/molecules-27-00658-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/ee8220871fd8/molecules-27-00658-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/11cc87e88ae9/molecules-27-00658-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/57a5a1dcbf71/molecules-27-00658-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/8ae83d91fdae/molecules-27-00658-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/b99cecb28613/molecules-27-00658-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d2e3703b7cd3/molecules-27-00658-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/5287047ca6dc/molecules-27-00658-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/dbb7540d4069/molecules-27-00658-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d0fa619c3ad7/molecules-27-00658-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d35f681f05a4/molecules-27-00658-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/8bb65d8f88e5/molecules-27-00658-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/7c2063d438ea/molecules-27-00658-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/fb37503fe7df/molecules-27-00658-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/2b8fdbf1f76f/molecules-27-00658-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/8803e7ab038f/molecules-27-00658-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d70eeec276f6/molecules-27-00658-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/3b84375f1fd2/molecules-27-00658-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/5cefd8f478ad/molecules-27-00658-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/9b2f5ad0abe8/molecules-27-00658-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/922640e689e1/molecules-27-00658-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/d50862f7493f/molecules-27-00658-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/bb23ff96c85f/molecules-27-00658-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/f797e40c7207/molecules-27-00658-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/6ee21714c414/molecules-27-00658-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/f8493bebd1ca/molecules-27-00658-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/684d1f4659e4/molecules-27-00658-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/ecbb12ae2d99/molecules-27-00658-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/96c3f819459d/molecules-27-00658-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/7fe0d48296cb/molecules-27-00658-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee4/8838458/99ca9638575b/molecules-27-00658-g031.jpg

相似文献

[1]
Approaches to the Potential Therapy of COVID-19: A General Overview from the Medicinal Chemistry Perspective.

Molecules. 2022-1-20

[2]
TMPRSS2 and RNA-Dependent RNA Polymerase Are Effective Targets of Therapeutic Intervention for Treatment of COVID-19 Caused by SARS-CoV-2 Variants (B.1.1.7 and B.1.351).

Microbiol Spectr. 2021-9-3

[3]
Potential inhibitors of SARS-CoV-2: recent advances.

J Drug Target. 2021-4

[4]
Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies.

J Cell Physiol. 2021-4

[5]
Overview of antiviral drug candidates targeting coronaviral 3C-like main proteases.

FEBS J. 2021-9

[6]
Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting.

Inflammopharmacology. 2021-4

[7]
Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection.

Virus Res. 2020-9-24

[8]
Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology.

Top Curr Chem (Cham). 2021-4-22

[9]
Drugs, Metabolites, and Lung Accumulating Small Lysosomotropic Molecules: Multiple Targeting Impedes SARS-CoV-2 Infection and Progress to COVID-19.

Int J Mol Sci. 2021-2-11

[10]
Structural Basis of Covalent Inhibitory Mechanism of TMPRSS2-Related Serine Proteases by Camostat.

J Virol. 2021-9-9

引用本文的文献

[1]
Biological and computational assessments of thiazole derivative-reinforced bile salt enriched nano carriers: a new gate in targeting SARS-CoV-2 spike protein.

RSC Adv. 2024-12-9

[2]
Computational discovery of dual potential inhibitors of SARS-CoV-2 spike/ACE2 and M: 3D-pharmacophore, docking-based virtual screening, quantum mechanics and molecular dynamics.

Eur Biophys J. 2024-8

[3]
Discovery of Pyrano[2,3-]pyrazole Derivatives as Novel Potential Human Coronavirus Inhibitors: Design, Synthesis, In Silico, In Vitro, and ADME Studies.

Pharmaceuticals (Basel). 2024-2-2

[4]
The Design, Synthesis and Mechanism of Action of Paxlovid, a Protease Inhibitor Drug Combination for the Treatment of COVID-19.

Pharmaceutics. 2024-2-2

[5]
Antiviral options and therapeutics against influenza: history, latest developments and future prospects.

Front Cell Infect Microbiol. 2023

[6]
Aprotinin-Drug against Respiratory Diseases.

Int J Mol Sci. 2023-7-6

[7]
In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors.

Biomolecules. 2023-6-7

[8]
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2.

Top Curr Chem (Cham). 2023-6-15

[9]
Roles of host proteases in the entry of SARS-CoV-2.

Anim Dis. 2023

[10]
Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro.

Viruses. 2023-4-15

本文引用的文献

[1]
Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.

Nature. 2022-2

[2]
Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients.

N Engl J Med. 2022-2-10

[3]
Merck's COVID pill loses its lustre: what that means for the pandemic.

Nature. 2021-12-13

[4]
The JAK/STAT signaling pathway: from bench to clinic.

Signal Transduct Target Ther. 2021-11-26

[5]
Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Direct Binding to the Spike Protein.

ACS Chem Biol. 2021-12-17

[6]
Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein.

Proc Natl Acad Sci U S A. 2021-11-30

[7]
Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332.

Protein Cell. 2022-9

[8]
Natural Polyphenols as Immunomodulators to Rescue Immune Response Homeostasis: Quercetin as a Research Model against Severe COVID-19.

Molecules. 2021-9-25

[9]
The lesson of ivermectin: meta-analyses based on summary data alone are inherently unreliable.

Nat Med. 2021-11

[10]
Structural biology of SARS-CoV-2 and implications for therapeutic development.

Nat Rev Microbiol. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索