Suppr超能文献

多胺代谢的再平衡抑制了髓核细胞的氧化应激并延缓了衰老。

Rebalance of the Polyamine Metabolism Suppresses Oxidative Stress and Delays Senescence in Nucleus Pulposus Cells.

机构信息

Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, China.

Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 215006 Suzhou, China.

出版信息

Oxid Med Cell Longev. 2022 Feb 7;2022:8033353. doi: 10.1155/2022/8033353. eCollection 2022.

Abstract

Intervertebral disk degeneration (IDD) is a major cause of low back pain that becomes a prevalent age-related disease. However, the pathophysiological processes behind IDD are rarely known. Here, we used bioinformatics analysis based on the microarray datasets (GSE34095) to identify the differentially expressed genes (DEGs) as biomarkers and therapeutic targets in degenerated discs. From the previous studies, oxidative stress has been notified as a positive inducement of IDD, which causes DNA damage and accelerates cell senescence. Polyamine oxidase (PAOX), a member of the observed 1057 DEGs, is involved in polyamine metabolism and influences the oxidative balance in cells. However, it is uncertain if the IDD is implicated in the dysregulation of PAOX and polyamine metabolism. This study firstly verified the PAOX upregulation in human degenerated disc samples and applied an IL-1-induced nucleus pulposus (NP) cell degeneration model to demonstrate that spermidine supplementation balanced polyamine metabolism and delayed NP cell senescence. Moreover, we confirmed that spermidine/N-acetylcysteine supplementation or Cdkn2a gene deletion stabilized the polyamine metabolism, suppressed oxidative stress, and therefore delayed the progress of IDD in older mice. Collectively, our study highlights the role of polyamine metabolism in IDD and foresees spermidine would be the advanced therapeutical drug for IDD.

摘要

椎间盘退变(IDD)是导致腰痛的主要原因,也是一种常见的与年龄相关的疾病。然而,IDD 的病理生理过程知之甚少。在这里,我们使用基于微阵列数据集(GSE34095)的生物信息学分析来鉴定作为生物标志物和治疗靶点的退变椎间盘中的差异表达基因(DEG)。从先前的研究中可知,氧化应激被认为是 IDD 的积极诱因,它会导致 DNA 损伤并加速细胞衰老。多胺氧化酶(PAOX)是观察到的 1057 个 DEG 中的一个成员,参与多胺代谢并影响细胞中的氧化平衡。然而,尚不确定 IDD 是否与 PAOX 和多胺代谢的失调有关。本研究首先验证了人退变椎间盘样本中 PAOX 的上调,并应用 IL-1 诱导的髓核(NP)细胞退变模型证明了亚精胺补充平衡了多胺代谢并延缓了 NP 细胞衰老。此外,我们证实亚精胺/N-乙酰半胱氨酸补充或 Cdkn2a 基因缺失稳定了多胺代谢,抑制了氧化应激,从而延缓了老年小鼠 IDD 的进展。总之,我们的研究强调了多胺代谢在 IDD 中的作用,并预示着亚精胺将成为 IDD 的先进治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0747/8844099/32f55d474040/OMCL2022-8033353.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验