Suppr超能文献

PathogenTrack 和 Yeskit:通过应用于 COVID-19 来说明,从单细胞 RNA 测序数据集中鉴定细胞内病原体的工具。

PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19.

机构信息

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Front Med. 2022 Apr;16(2):251-262. doi: 10.1007/s11684-021-0915-9. Epub 2022 Feb 22.

Abstract

Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.

摘要

病原体可以诱导细胞功能障碍、免疫反应,并导致传染病和其他疾病,包括癌症。然而,由于方法有限,病原体在细胞中的分布及其对宿主细胞的影响仍很少被探索。利用单细胞 RNA 测序(scRNA-seq)分析,我们可以评估单细胞水平的转录组特征。然而,用于在单细胞水平上解释病原体(如病毒、细菌和真菌)的工具仍有待探索。在这里,我们引入了 PathogenTrack,这是一个基于 python 的计算流程,它使用未映射的 scRNA-seq 数据来识别单细胞水平的细胞内病原体。此外,我们建立了一个名为 Yeskit 的 R 包,用于导入、整合、分析和解释宿主细胞中病原体丰度和转录组特征。这些工具在各种真实和模拟的 scRNA-seq 数据集上的稳健性已经得到了测试。PathogenTrack 与 Viral-Track 等最先进的工具竞争,是第一个用于识别单细胞水平细菌的工具。使用 SRA 数据库中 COVID-19 患者支气管肺泡灌洗液(BALF)的原始数据,我们发现 SARS-CoV-2 病毒存在于多种细胞类型中,包括上皮细胞和巨噬细胞。SARS-CoV-2 阳性的中性粒细胞表现出与 I 型干扰素途径和抗原呈递模块相关的基因表达增加。此外,我们在一些巨噬细胞和上皮细胞中观察到副溶血弧菌,表明在 COVID-19 的一些严重病例中存在细菌的合并感染。PathogenTrack 管道和 Yeskit 包在 GitHub 上公开可用。

相似文献

引用本文的文献

本文引用的文献

8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验