Suppr超能文献

宿主-病毒感染图谱揭示了重症 COVID-19 患者的特征。

Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients.

机构信息

Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris 75015, France; Sorbonne Universite, Complexite du vivant, Paris 75005, France.

Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Cell. 2020 Jun 25;181(7):1475-1488.e12. doi: 10.1016/j.cell.2020.05.006. Epub 2020 May 8.

Abstract

Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently, lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans unmapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsupervised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 patients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dissecting the mechanisms of viral-infection and pathology.

摘要

病毒是全球健康的一个持续威胁,当前的 COVID-19 大流行就凸显了这一点。目前,人类宿主与病毒(包括 SARS-CoV-2 病毒)相互作用的底层数据的缺乏限制了有效的治疗干预。我们引入了 Viral-Track,这是一种计算方法,可以全局扫描未映射的单细胞 RNA 测序(scRNA-seq)数据中病毒 RNA 的存在情况,从而实现感染细胞与旁观者细胞的转录细胞分选。我们证明了 Viral-Track 以非监督方式从多种感染模型(包括乙型肝炎病毒)中系统检测病毒的敏感性和特异性。将 Viral-Track 应用于严重和轻度 COVID-19 患者的支气管肺泡灌洗液样本中,揭示了病毒对严重患者免疫系统的巨大影响,与轻度病例相比。Viral-Track 检测到人类偏肺病毒的意外合并感染,该病毒主要存在于受 I 型干扰素(IFN)信号转导干扰的单核细胞中。Viral-Track 为剖析病毒感染和病理学的机制提供了一种强大的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/742f/7205692/e18bde0c9a65/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验