Institute of molecular rhythm and metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
College of Pharmacy, Jinan University, Guangzhou 510632, China.
Theranostics. 2022 Jan 16;12(4):1589-1606. doi: 10.7150/thno.69054. eCollection 2022.
While growing evidence suggests that circadian clock and obesity are intertwined, the underlying mechanism is poorly understood. Here, we investigate how circadian clock is linked to obesity. Metabolomics profiling of WAT (white adipose tissue) samples was performed to identify the metabolites altered in obese model. mRNA levels were analyzed by qPCR assays. Proteins were detected by immunoblotting, immunofluorescence and ELISA. ChIP and luciferase reporter assays were used to investigate epigenetic and transcriptional regulation. Obesity causes perturbance of circadian clock in WAT in mice and humans, particularly, BMAL1 is markedly reduced. Metabolomic analysis reveals reduced glutamine and methionine in obese WAT. Glutamine metabolism contributes to production of acetyl-CoA, whereas methionine metabolism generates S-adenosyl methionine (SAM). Acetyl-CoA and SAM are the substrates for histone acetylation and methylation, respectively. Reduced glutamine and methionine in obese WAT are associated with decreased H3K27ac and H3K4me3 at promoter. Consistently, glutamine or methionine administration and increases H3K27ac or H3K4me3, promoting transcription and expression. A screen of transport and metabolic genes identifies downregulation of the uptake transporter SLC1A5 as a cause of reduced glutamine or methionine in obese WAT. Moreover, we observe impaired expression of PPAR-γ in obese WAT. PPAR-γ trans-activates via direct binding to a response element in promoter. Impaired PPAR-γ in obesity provokes downregulation of SLC1A5 and reductions in adipocyte uptake of glutamine and methionine (two epigenetic modulators), leading to disruption of . Therefore, PPAR-γ integrates obesity and adipocyte clock, promoting a vicious cycle between circadian disruption and obesity development.
越来越多的证据表明,生物钟和肥胖是相互关联的,但其中的机制尚不清楚。在这里,我们研究了生物钟与肥胖的关系。对 WAT(白色脂肪组织)样本进行代谢组学分析,以鉴定肥胖模型中改变的代谢物。通过 qPCR 检测分析 mRNA 水平。通过免疫印迹、免疫荧光和 ELISA 检测蛋白质。使用 ChIP 和荧光素酶报告基因检测来研究表观遗传和转录调控。肥胖导致小鼠和人类 WAT 中生物钟紊乱,特别是 BMAL1 明显减少。代谢组学分析显示肥胖 WAT 中谷氨酰胺和蛋氨酸减少。谷氨酰胺代谢有助于乙酰辅酶 A 的产生,而蛋氨酸代谢生成 S-腺苷甲硫氨酸(SAM)。乙酰辅酶 A 和 SAM 分别是组蛋白乙酰化和甲基化的底物。肥胖 WAT 中减少的谷氨酰胺和蛋氨酸与启动子处 H3K27ac 和 H3K4me3 的减少有关。谷氨酰胺或蛋氨酸的给药增加了 H3K27ac 或 H3K4me3,促进了的转录和表达。转运和代谢基因的筛选确定了摄取转运体 SLC1A5 的下调是肥胖 WAT 中谷氨酰胺或蛋氨酸减少的原因。此外,我们观察到肥胖 WAT 中 PPAR-γ 的表达受损。PPAR-γ 通过直接结合启动子中的反应元件来转录激活。肥胖中 PPAR-γ 的功能障碍会导致 SLC1A5 的下调和脂肪细胞对谷氨酰胺和蛋氨酸(两种表观遗传调节剂)的摄取减少,从而破坏。因此,PPAR-γ 整合了肥胖和脂肪细胞时钟,促进了生物钟紊乱和肥胖发展之间的恶性循环。