Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
Genes (Basel). 2022 Jan 24;13(2):209. doi: 10.3390/genes13020209.
Sepsis is a clinical syndrome with high mortality and morbidity rates. In sepsis, the abrupt release of cytokines by the innate immune system may cause multiorgan failure, leading to septic shock and associated complications. In the presence of a number of systemic disorders, such as sepsis, infections, diabetes, and systemic lupus erythematosus (SLE), cardiorenal syndrome (CRS) type 5 is defined by concomitant cardiac and renal dysfunctions Thus, our study suggests that certain mRNAs and unexplored pathways may pave a way to unravel critical therapeutic targets in three debilitating and interrelated illnesses, namely, sepsis, SLE, and CRS. Sepsis, SLE, and CRS are closely interrelated complex diseases likely sharing an overlapping pathogenesis caused by erroneous gene network activities. We sought to identify the shared gene networks and the key genes for sepsis, SLE, and CRS by completing an integrative analysis. Initially, 868 DEGs were identified in 16 GSE datasets. Based on degree centrality, 27 hub genes were revealed. The gProfiler webtool was used to perform functional annotations and enriched molecular pathway analyses. Finally, core hub genes (, and ) were validated using RT-PCR analysis. Our comprehensive multiplex network approach to hub gene discovery is effective, as evidenced by the findings. This work provides a novel research path for a new research direction in multi-omics biological data analysis.
脓毒症是一种具有高死亡率和高发病率的临床综合征。在脓毒症中,固有免疫系统突然释放细胞因子可能导致多器官衰竭,导致感染性休克和相关并发症。在存在许多系统性疾病的情况下,如脓毒症、感染、糖尿病和系统性红斑狼疮 (SLE),心脏-肾脏综合征 (CRS) 5 型是由心脏和肾脏功能障碍共同定义的。因此,我们的研究表明,某些 mRNA 和未探索的途径可能为三种衰弱和相互关联的疾病(即脓毒症、SLE 和 CRS)中的关键治疗靶点提供途径。脓毒症、SLE 和 CRS 密切相关,是复杂的疾病,可能由于错误的基因网络活动而具有重叠的发病机制。我们通过完成综合分析来确定脓毒症、SLE 和 CRS 的共享基因网络和关键基因。最初,在 16 个 GSE 数据集中共鉴定出 868 个差异表达基因。基于节点度,揭示了 27 个枢纽基因。使用 gProfiler 网络工具进行功能注释和丰富的分子途径分析。最后,使用 RT-PCR 分析验证了核心枢纽基因(、和)。我们的综合多重网络方法发现枢纽基因是有效的,这一点从研究结果中可以得到证明。这项工作为多组学生物数据分析的新研究方向提供了一条新的研究途径。