Suppr超能文献

基于约束迭代偏微分方程优化的全局最优 OCT 表面分割。

Globally optimal OCT surface segmentation using a constrained IPM optimization.

出版信息

Opt Express. 2022 Jan 17;30(2):2453-2471. doi: 10.1364/OE.444369.

Abstract

Segmentation of multiple surfaces in optical coherence tomography (OCT) images is a challenging problem, further complicated by the frequent presence of weak boundaries, varying layer thicknesses, and mutual influence between adjacent surfaces. The traditional graph-based optimal surface segmentation method has proven its effectiveness with its ability to capture various surface priors in a uniform graph model. However, its efficacy heavily relies on handcrafted features that are used to define the surface cost for the "goodness" of a surface. Recently, deep learning (DL) is emerging as a powerful tool for medical image segmentation thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data in medical imaging, it is nontrivial for DL networks to implicitly learn the global structure of the target surfaces, including surface interactions. This study proposes to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal surfaces are then simultaneously detected by minimizing the total surface cost while explicitly enforcing the mutual surface interaction constraints. The optimization problem is solved by the primal-dual interior-point method (IPM), which can be implemented by a layer of neural networks, enabling efficient end-to-end training of the whole network. Experiments on spectral-domain optical coherence tomography (SD-OCT) retinal layer segmentation demonstrated promising segmentation results with sub-pixel accuracy.

摘要

光学相干断层扫描(OCT)图像中的多表面分割是一个具有挑战性的问题,由于弱边界的频繁出现、层厚度的变化以及相邻表面之间的相互影响,使得问题更加复杂。传统的基于图的最优表面分割方法已经证明了其有效性,它能够在统一的图模型中捕获各种表面先验。然而,它的效果严重依赖于手工制作的特征,这些特征用于定义表面成本,以衡量表面的“好坏”。最近,深度学习(DL)由于其出色的特征学习能力,正在成为医学图像分割的有力工具。不幸的是,由于医学成像中训练数据的稀缺,DL 网络很难隐式地学习目标表面的全局结构,包括表面相互作用。本研究提出在图模型中参数化表面成本函数,并利用 DL 来学习这些参数。然后通过最小化总表面成本来同时检测多个最优表面,同时显式地强制施加相互表面交互约束。优化问题通过主对偶内点法(IPM)求解,该方法可以通过一层神经网络来实现,从而可以有效地对整个网络进行端到端训练。在光谱域光学相干断层扫描(SD-OCT)视网膜层分割上的实验表明,该方法具有亚像素级的精度,分割结果很有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验