Suppr超能文献

基于深度学习的拓扑保证的视网膜光学相干断层扫描(OCT)中多发性硬化症患者的表面和黄斑内侧视网膜厚度(MME)分割

Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT.

作者信息

He Yufan, Carass Aaron, Liu Yihao, Jedynak Bruno M, Solomon Sharon D, Saidha Shiv, Calabresi Peter A, Prince Jerry L

机构信息

Deptartment of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biomed Opt Express. 2019 Sep 12;10(10):5042-5058. doi: 10.1364/BOE.10.005042. eCollection 2019 Oct 1.

Abstract

Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume.

摘要

光学相干断层扫描(OCT)是一种非侵入性成像方式,可用于获取视网膜的深度图像。多发性硬化症(MS)患者的视网膜神经纤维层和神经节细胞层会变薄,约5%的MS患者视网膜内会出现微囊性黄斑水肿(MME)。视网膜层和MME的分割可为监测MS进展提供重要信息。基于机器学习预处理的基于图的分割是视网膜层分割的主要方法,能提供具有正确拓扑顺序的精确表面轮廓。然而,基于图的方法耗时且未最优地纳入联合MME分割。本文提出一种深度网络,可提取连续、平滑且拓扑有保证的表面和MME。该网络在训练过程中自动学习形状先验,而非像基于图的方法那样进行硬编码。在这种新方法中,视网膜表面和MME通过两个级联深度网络在单次前馈传播中一起分割。所提出的框架以与现有最佳基于图的方法相当的亚像素表面精度获取视网膜表面(分隔各层),并以比现有最先进方法更高的精度获取MME。对于一个3D体积,完整的分割操作仅需10秒。

相似文献

1
Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT.
Biomed Opt Express. 2019 Sep 12;10(10):5042-5058. doi: 10.1364/BOE.10.005042. eCollection 2019 Oct 1.
2
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14.
3
Fully Convolutional Boundary Regression for Retina OCT Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11764:120-128. doi: 10.1007/978-3-030-32239-7_14. Epub 2019 Oct 10.
4
Simultaneous Segmentation of Retinal Surfaces and Microcystic Macular Edema in SDOCT Volumes.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784. doi: 10.1117/12.2214676. Epub 2016 Mar 21.
6
Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images.
IEEE Trans Med Imaging. 2023 Nov;42(11):3140-3154. doi: 10.1109/TMI.2023.3240757. Epub 2023 Oct 27.
8
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.
Comput Biol Med. 2023 Mar;154:106512. doi: 10.1016/j.compbiomed.2022.106512. Epub 2023 Jan 10.
9
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
10
Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.

引用本文的文献

1
A weak edge estimation based multi-task neural network for OCT segmentation.
PLoS One. 2025 Jan 3;20(1):e0316089. doi: 10.1371/journal.pone.0316089. eCollection 2025.
2
Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.
IEEE Access. 2023;11:103319-103332. doi: 10.1109/access.2023.3317011. Epub 2023 Sep 18.
3
ScLNet: A cornea with scleral lens OCT layers segmentation dataset and new multi-task model.
Heliyon. 2024 Jun 29;10(13):e33911. doi: 10.1016/j.heliyon.2024.e33911. eCollection 2024 Jul 15.
4
Boundary-Repairing Dual-Path Network for Retinal Layer Segmentation in OCT Image with Pigment Epithelial Detachment.
J Imaging Inform Med. 2024 Dec;37(6):3101-3130. doi: 10.1007/s10278-024-01093-y. Epub 2024 May 13.
5
Deep learning in optical coherence tomography: Where are the gaps?
Clin Exp Ophthalmol. 2023 Nov;51(8):853-863. doi: 10.1111/ceo.14258. Epub 2023 May 28.
6
Longitudinal deep network for consistent OCT layer segmentation.
Biomed Opt Express. 2023 Apr 3;14(5):1874-1893. doi: 10.1364/BOE.487518. eCollection 2023 May 1.
7
Intraretinal Layer Segmentation Using Cascaded Compressed U-Nets.
J Imaging. 2022 May 17;8(5):139. doi: 10.3390/jimaging8050139.
8
OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN.
Sensors (Basel). 2022 Mar 4;22(5):2016. doi: 10.3390/s22052016.
10

本文引用的文献

1
Cerebellum Parcellation with Convolutional Neural Networks.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10949. doi: 10.1117/12.2512119. Epub 2019 Mar 15.
2
Multi-layer Fast Level Set Segmentation for Macular OCT.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1445-1448. doi: 10.1109/ISBI.2018.8363844. Epub 2018 May 24.
3
Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.
4
Retinal measurements predict 10-year disability in multiple sclerosis.
Ann Clin Transl Neurol. 2019 Jan 19;6(2):222-232. doi: 10.1002/acn3.674. eCollection 2019 Feb.
5
Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls.
Data Brief. 2018 Dec 28;22:601-604. doi: 10.1016/j.dib.2018.12.073. eCollection 2019 Feb.
6
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
7
The application of optical coherence tomography in neurologic diseases.
Neurol Clin Pract. 2015 Oct;5(5):460-469. doi: 10.1212/CPJ.0000000000000187.
8
Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
Ophthalmology. 2018 Apr;125(4):549-558. doi: 10.1016/j.ophtha.2017.10.031. Epub 2017 Dec 8.
9
A benchmark study of automated intra-retinal cyst segmentation algorithms using optical coherence tomography B-scans.
Comput Methods Programs Biomed. 2018 Jan;153:105-114. doi: 10.1016/j.cmpb.2017.10.010. Epub 2017 Oct 12.
10
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验