Suppr超能文献

DrABC:基于表型数据,深度学习能准确预测乳腺癌患者的胚系致病性突变状态。

DrABC: deep learning accurately predicts germline pathogenic mutation status in breast cancer patients based on phenotype data.

机构信息

Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, China.

出版信息

Genome Med. 2022 Feb 25;14(1):21. doi: 10.1186/s13073-022-01027-9.

Abstract

BACKGROUND

Identifying breast cancer patients with DNA repair pathway-related germline pathogenic variants (GPVs) is important for effectively employing systemic treatment strategies and risk-reducing interventions. However, current criteria and risk prediction models for prioritizing genetic testing among breast cancer patients do not meet the demands of clinical practice due to insufficient accuracy.

METHODS

The study population comprised 3041 breast cancer patients enrolled from seven hospitals between October 2017 and 11 August 2019, who underwent germline genetic testing of 50 cancer predisposition genes (CPGs). Associations among GPVs in different CPGs and endophenotypes were evaluated using a case-control analysis. A phenotype-based GPV risk prediction model named DNA-repair Associated Breast Cancer (DrABC) was developed based on hierarchical neural network architecture and validated in an independent multicenter cohort. The predictive performance of DrABC was compared with currently used models including BRCAPRO, BOADICEA, Myriad, PENN II, and the NCCN criteria.

RESULTS

In total, 332 (11.3%) patients harbored GPVs in CPGs, including 134 (4.6%) in BRCA2, 131 (4.5%) in BRCA1, 33 (1.1%) in PALB2, and 37 (1.3%) in other CPGs. GPVs in CPGs were associated with distinct endophenotypes including the age at diagnosis, cancer history, family cancer history, and pathological characteristics. We developed a DrABC model to predict the risk of GPV carrier status in BRCA1/2 and other important CPGs. In predicting GPVs in BRCA1/2, the performance of DrABC (AUC = 0.79 [95% CI, 0.74-0.85], sensitivity = 82.1%, specificity = 63.1% in the independent validation cohort) was better than that of previous models (AUC range = 0.57-0.70). In predicting GPVs in any CPG, DrABC (AUC = 0.74 [95% CI, 0.69-0.79], sensitivity = 83.8%, specificity = 51.3% in the independent validation cohort) was also superior to previous models in their current versions (AUC range = 0.55-0.65). After training these previous models with the Chinese-specific dataset, DrABC still outperformed all other methods except for BOADICEA, which was the only previous model with the inclusion of pathological features. The DrABC model also showed higher sensitivity and specificity than the NCCN criteria in the multi-center validation cohort (83.8% and 51.3% vs. 78.8% and 31.2%, respectively, in predicting GPVs in any CPG). The DrABC model implementation is available online at http://gifts.bio-data.cn/ .

CONCLUSIONS

By considering the distinct endophenotypes associated with different CPGs in breast cancer patients, a phenotype-driven prediction model based on hierarchical neural network architecture was created for identification of hereditary breast cancer. The model achieved superior performance in identifying GPV carriers among Chinese breast cancer patients.

摘要

背景

鉴定具有 DNA 修复途径相关种系致病性变异(GPV)的乳腺癌患者对于有效采用系统治疗策略和降低风险干预措施非常重要。然而,由于准确性不足,目前用于优先考虑乳腺癌患者进行基因检测的标准和风险预测模型无法满足临床实践的需求。

方法

该研究人群包括 2017 年 10 月至 2019 年 8 月 11 日期间来自 7 家医院的 3041 名乳腺癌患者,他们接受了 50 种癌症易感性基因(CPG)的种系基因检测。使用病例对照分析评估不同 CPG 中的 GPV 与表型之间的关联。基于分层神经网络架构开发了一种名为 DNA 修复相关乳腺癌(DrABC)的表型 GPV 风险预测模型,并在独立的多中心队列中进行验证。比较了 DrABC 与当前使用的模型(BRCAPRO、BOADICEA、Myriad、PENN II 和 NCCN 标准)的预测性能。

结果

共有 332 名(11.3%)患者的 CPG 中存在 GPV,其中 BRCA2 中有 134 名(4.6%),BRCA1 中有 131 名(4.5%),PALB2 中有 33 名(1.1%),其他 CPG 中有 37 名(1.3%)。CPG 中的 GPVs 与不同的表型特征相关,包括诊断时的年龄、癌症史、家族癌症史和病理特征。我们开发了一种 DrABC 模型来预测 BRCA1/2 和其他重要 CPG 中 GPV 携带者状态的风险。在预测 BRCA1/2 中的 GPVs 时,DrABC 的性能(AUC=0.79[95%CI,0.74-0.85],灵敏度=82.1%,特异性=63.1%在独立验证队列)优于以前的模型(AUC 范围=0.57-0.70)。在预测任何 CPG 中的 GPVs 时,DrABC(AUC=0.74[95%CI,0.69-0.79],灵敏度=83.8%,特异性=51.3%在独立验证队列)也优于其当前版本的以前模型(AUC 范围=0.55-0.65)。在用中国特定数据集训练这些以前的模型后,DrABC 仍然优于除 BOADICEA 之外的所有其他方法,BOADICEA 是唯一包含病理特征的以前模型。在多中心验证队列中,DrABC 模型的灵敏度和特异性也高于 NCCN 标准(分别为 83.8%和 51.3%,预测任何 CPG 中的 GPVs 时为 78.8%和 31.2%)。DrABC 模型的实施可在 http://gifts.bio-data.cn/ 在线获取。

结论

通过考虑乳腺癌患者中与不同 CPG 相关的不同表型,基于分层神经网络架构创建了一种基于表型的预测模型,用于识别遗传性乳腺癌。该模型在识别中国乳腺癌患者中的 GPV 携带者方面表现出优异的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/506e/8876403/80435bed9e1b/13073_2022_1027_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验