Suppr超能文献

解密蛋白质和核酸变构的新兴方法与应用

Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids.

作者信息

Arantes Pablo R, Patel Amun C, Palermo Giulia

机构信息

Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States. Electronic address: https://twitter.com/pablitoarantes.

Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.

出版信息

J Mol Biol. 2022 Sep 15;434(17):167518. doi: 10.1016/j.jmb.2022.167518. Epub 2022 Feb 28.

Abstract

Many large protein-nucleic acid complexes exhibit allosteric regulation. In these systems, the propagation of the allosteric signaling is strongly coupled to conformational dynamics and catalytic function, challenging state-of-the-art analytical methods. Here, we review established and innovative approaches used to elucidate allosteric mechanisms in these complexes. Specifically, we report network models derived from graph theory and centrality analyses in combination with molecular dynamics (MD) simulations, introducing novel schemes that implement the synergistic use of graph theory with enhanced simulations methods and ab-initio MD. Accelerated MD simulations are used to construct "enhanced network models", describing the allosteric response over long timescales and capturing the relation between allostery and conformational changes. "Ab-initio network models" combine graph theory with ab-initio MD and quantum mechanics/molecular mechanics (QM/MM) simulations to describe the allosteric regulation of catalysis by following the step-by-step dynamics of biochemical reactions. This approach characterizes how the allosteric regulation changes from reactants to products and how it affects the transition state, revealing a tense-to-relaxed allosteric regulation along the chemical step. Allosteric models and applications are showcased for three paradigmatic examples of allostery in protein-nucleic acid complexes: (i) the nucleosome core particle, (ii) the CRISPR-Cas9 genome editing system and (iii) the spliceosome. These methods and applications create innovative protocols to determine allosteric mechanisms in protein-nucleic acid complexes that show tremendous promise for medicine and bioengineering.

摘要

许多大型蛋白质 - 核酸复合物表现出变构调节。在这些系统中,变构信号的传播与构象动力学和催化功能紧密耦合,这对现有最先进的分析方法提出了挑战。在这里,我们综述了用于阐明这些复合物中变构机制的既定方法和创新方法。具体而言,我们报告了源自图论和中心性分析并结合分子动力学(MD)模拟的网络模型,引入了将图论与增强模拟方法和从头算MD协同使用的新方案。加速MD模拟用于构建“增强网络模型”,描述长时间尺度上的变构响应并捕捉变构与构象变化之间的关系。“从头算网络模型”将图论与从头算MD和量子力学/分子力学(QM/MM)模拟相结合,通过跟踪生化反应的逐步动力学来描述催化的变构调节。这种方法表征了变构调节如何从反应物转变为产物以及它如何影响过渡态,揭示了沿化学步骤从紧张到松弛的变构调节。针对蛋白质 - 核酸复合物中变构的三个典型例子展示了变构模型及其应用:(i)核小体核心颗粒,(ii)CRISPR - Cas9基因组编辑系统,以及(iii)剪接体。这些方法和应用创建了创新方案来确定蛋白质 - 核酸复合物中的变构机制,这对医学和生物工程具有巨大的前景。

相似文献

1
Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids.
J Mol Biol. 2022 Sep 15;434(17):167518. doi: 10.1016/j.jmb.2022.167518. Epub 2022 Feb 28.
2
Dynamics and mechanisms of CRISPR-Cas9 through the lens of computational methods.
Curr Opin Struct Biol. 2022 Aug;75:102400. doi: 10.1016/j.sbi.2022.102400. Epub 2022 Jun 8.
3
Establishing the allosteric mechanism in CRISPR-Cas9.
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.
4
Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations.
J Struct Biol. 2019 Jun 1;206(3):267-279. doi: 10.1016/j.jsb.2019.03.004. Epub 2019 Mar 15.
5
Markov models for the elucidation of allosteric regulation.
Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749). doi: 10.1098/rstb.2017.0178.
6
CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7260-7265. doi: 10.1073/pnas.1707645114. Epub 2017 Jun 26.
7
Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9.
Elife. 2021 Dec 15;10:e73601. doi: 10.7554/eLife.73601.
9
Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
J Am Chem Soc. 2017 Nov 15;139(45):16028-16031. doi: 10.1021/jacs.7b05313. Epub 2017 Aug 7.
10
Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary Approaches Based on Unbiased Molecular Dynamics Simulations.
J Am Chem Soc. 2024 Jan 10;146(1):901-919. doi: 10.1021/jacs.3c11396. Epub 2023 Dec 20.

引用本文的文献

1
Graph Attention Neural Networks Reveal TnsC Filament Assembly in a CRISPR-Associated Transposon.
bioRxiv. 2025 Jun 17:2025.06.17.659969. doi: 10.1101/2025.06.17.659969.
2
3
Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of the influenza A virus.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2410813122. doi: 10.1073/pnas.2410813122. Epub 2025 Feb 20.
4
The role of ribosomal protein networks in ribosome dynamics.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1308.
5
Graph theory approaches for molecular dynamics simulations.
Q Rev Biophys. 2024 Dec 10;57:e15. doi: 10.1017/S0033583524000143.
6
ATOMDANCE: Kernel-based denoising and choreographic analysis for protein dynamic comparison.
Biophys J. 2024 Sep 3;123(17):2705-2715. doi: 10.1016/j.bpj.2024.03.024. Epub 2024 Mar 21.
7
High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9.
Sci Adv. 2024 Mar 8;10(10):eadl1045. doi: 10.1126/sciadv.adl1045. Epub 2024 Mar 6.
9
Unveiling the RNA-mediated allosteric activation discloses functional hotspots in CRISPR-Cas13a.
Nucleic Acids Res. 2024 Jan 25;52(2):906-920. doi: 10.1093/nar/gkad1127.
10

本文引用的文献

1
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
2
Structural basis for mismatch surveillance by CRISPR-Cas9.
Nature. 2022 Mar;603(7900):343-347. doi: 10.1038/s41586-022-04470-1. Epub 2022 Mar 2.
3
Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9.
Elife. 2021 Dec 15;10:e73601. doi: 10.7554/eLife.73601.
4
Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Cas9 by the anti-CRISPR protein AcrIIA6.
Comput Struct Biotechnol J. 2021 Nov 16;19:6108-6124. doi: 10.1016/j.csbj.2021.11.010. eCollection 2021.
5
Gaussian accelerated molecular dynamics (GaMD): principles and applications.
Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5). doi: 10.1002/wcms.1521. Epub 2021 Mar 1.
6
Structural and dynamic insights into the HNH nuclease of divergent Cas9 species.
J Struct Biol. 2022 Mar;214(1):107814. doi: 10.1016/j.jsb.2021.107814. Epub 2021 Dec 3.
8
Establishing the allosteric mechanism in CRISPR-Cas9.
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.
10
Molecular Dynamics to Predict Cryo-EM: Capturing Transitions and Short-Lived Conformational States of Biomolecules.
Front Mol Biosci. 2021 Apr 5;8:641208. doi: 10.3389/fmolb.2021.641208. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验