Remedios Samuel W, Han Shuo, Dewey Blake E, Pham Dzung L, Prince Jerry L, Carass Aaron
Department of Computer Science, Johns Hopkins University, Baltimore MD 21218, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218, USA.
Simul Synth Med Imaging. 2021 Sep;12965:14-23. doi: 10.1007/978-3-030-87592-3_2. Epub 2021 Sep 21.
We propose a method to jointly super-resolve an anisotropic image volume along with its corresponding voxel labels without external training data. Our method is inspired by internally trained superresolution, or self-super-resolution (SSR) techniques that target anisotropic, low-resolution (LR) magnetic resonance (MR) images. While resulting images from such methods are quite useful, their corresponding LR labels-derived from either automatic algorithms or human raters-are no longer in correspondence with the super-resolved volume. To address this, we develop an SSR deep network that takes both an anisotropic LR MR image and its corresponding LR labels as input and produces both a super-resolved MR image and its super-resolved labels as output. We evaluated our method with 50 -weighted brain MR images 4× down-sampled with 10 automatically generated labels. In comparison to other methods, our method had superior Dice across all labels and competitive metrics on the MR image. Our approach is the first reported method for SSR of paired anisotropic image and label volumes.
我们提出了一种方法,无需外部训练数据即可对各向异性图像体及其相应的体素标签进行联合超分辨率重建。我们的方法受到内部训练的超分辨率或自超分辨率(SSR)技术的启发,这些技术针对各向异性低分辨率(LR)磁共振(MR)图像。虽然这些方法生成的图像非常有用,但其相应的LR标签(源自自动算法或人工评分)与超分辨率后的图像体不再对应。为了解决这个问题,我们开发了一个SSR深度网络,该网络将各向异性LR MR图像及其相应的LR标签作为输入,并生成超分辨率后的MR图像及其超分辨率后的标签作为输出。我们使用50幅4倍下采样的加权脑MR图像和10个自动生成的标签对我们的方法进行了评估。与其他方法相比,我们的方法在所有标签上具有更高的骰子系数,并且在MR图像上具有有竞争力的指标。我们的方法是首次报道的用于配对各向异性图像和标签体的SSR方法。