Syosset High School, Syosset, NY, 11791, USA.
Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.
Sci Rep. 2024 Oct 15;14(1):24139. doi: 10.1038/s41598-024-75044-6.
The emergence of Staphylococcus epidermidis as a significant nosocomial pathogen necessitates advancements in more efficient antimicrobial resistance profiling. However, existing culture-based and PCR-based antimicrobial susceptibility testing methods are far too slow or costly. This study combines machine learning with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to develop predictive models for various antibiotics using a comprehensive dataset containing thousands of S. epidermidis isolates. Optimized machine learning models utilized feature selection and achieved high AUROC scores ranging from 0.80 to 0.95 while maintaining AUPRC scores up to 0.97. Shapley Additive exPlanations were employed to analyze relevant features and assess the significance of corresponding protein biomarkers while also verifying that predictive power was derived from the detection of proteins rather than noise. Antimicrobial resistance models were validated externally to evaluate model performance outside the original data collection site. The approaches and findings in this study demonstrate a significant advancement in rapid, cost-effective antimicrobial resistance profiling, offering a promising solution for improving treatments for nosocomial infections and being potentially applicable to other microbial pathogens in the future.
表皮葡萄球菌作为一种重要的医院获得性病原体的出现,需要更有效的抗菌药物耐药性分析方法的进步。然而,现有的基于培养和聚合酶链反应(PCR)的抗菌药物敏感性测试方法过于缓慢或昂贵。本研究将机器学习与基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)相结合,使用包含数千个表皮葡萄球菌分离株的综合数据集,为各种抗生素开发预测模型。优化的机器学习模型利用特征选择,实现了高达 0.80 至 0.95 的高 AUROC 评分,同时保持高达 0.97 的 AUPRC 评分。Shapley Additive exPlanations 用于分析相关特征,并评估相应蛋白质生物标志物的重要性,同时还验证了预测能力源自于蛋白质的检测,而不是噪声。对抗菌药物耐药性模型进行了外部验证,以评估原始数据收集地点以外的模型性能。本研究中的方法和发现展示了一种快速、具有成本效益的抗菌药物耐药性分析方法的显著进展,为改善医院感染的治疗提供了有前途的解决方案,并可能在未来适用于其他微生物病原体。