Suppr超能文献

基于组合特征和图像的分类器的MRI脑肿瘤图像分类

MRI Brain Tumor Image Classification Using a Combined Feature and Image-Based Classifier.

作者信息

Veeramuthu A, Meenakshi S, Mathivanan G, Kotecha Ketan, Saini Jatinderkumar R, Vijayakumar V, Subramaniyaswamy V

机构信息

Department of Information Technology, School of Computing, Sathyabama Institute of Science and Technology, Chennai, India.

Department of Information Technology, Jeppiaar SRR Engineering College, Chennai, India.

出版信息

Front Psychol. 2022 Mar 4;13:848784. doi: 10.3389/fpsyg.2022.848784. eCollection 2022.

Abstract

Brain tumor classification plays a niche role in medical prognosis and effective treatment process. We have proposed a combined feature and image-based classifier (CFIC) for brain tumor image classification in this study. Carious deep neural network and deep convolutional neural networks (DCNN)-based architectures are proposed for image classification, namely, actual image feature-based classifier (AIFC), segmented image feature-based classifier (SIFC), actual and segmented image feature-based classifier (ASIFC), actual image-based classifier (AIC), segmented image-based classifier (), actual and segmented image-based classifier (ASIC), and finally, CFIC. The Kaggle Brain Tumor Detection 2020 dataset has been used to train and test the proposed classifiers. Among the various classifiers proposed, the CFIC performs better than all other proposed methods. The proposed CFIC method gives significantly better results in terms of sensitivity, specificity, and accuracy with 98.86, 97.14, and 98.97%, respectively, compared with the existing classification methods.

摘要

脑肿瘤分类在医学预后和有效治疗过程中发挥着重要作用。在本研究中,我们提出了一种用于脑肿瘤图像分类的基于特征和图像的组合分类器(CFIC)。针对图像分类提出了各种基于深度神经网络和深度卷积神经网络(DCNN)的架构,即基于实际图像特征的分类器(AIFC)、基于分割图像特征的分类器(SIFC)、基于实际和分割图像特征的分类器(ASIFC)、基于实际图像的分类器(AIC)、基于分割图像的分类器(此处原文缺失)、基于实际和分割图像的分类器(ASIC),最后是CFIC。使用了Kaggle 2020脑肿瘤检测数据集来训练和测试所提出的分类器。在所提出的各种分类器中,CFIC的性能优于所有其他提出的方法。与现有分类方法相比,所提出的CFIC方法在灵敏度、特异性和准确率方面分别给出了显著更好的结果,分别为98.86%、97.14%和98.97%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125f/8931531/c7bab432e158/fpsyg-13-848784-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验