Kim Ji-Yeong, Choi Woojin, Mangal Utkarsh, Seo Ji-Young, Kang Tae-Yun, Lee Joohee, Kim Taeho, Cha Jung-Yul, Lee Kee-Joon, Kim Kwang-Mahn, Kim Jin-Man, Kim Dohyun, Kwon Jae-Sung, Hong Jinkee, Choi Sung-Hwan
Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Bioact Mater. 2021 Nov 20;14:219-233. doi: 10.1016/j.bioactmat.2021.11.020. eCollection 2022 Aug.
Polyalkenoate cement (PAC) is a promising material for regenerative hard tissue therapy. The ionically rich glass component of PAC encourages bioactive interaction . the release of essential ions. However, PAC bioactivity is restricted owing to (i) structurally inherent cationic network formers and (ii) surface bacterial biofilm formation. These two factors cause a deficiency in ion release, further complicated by secondary infections and premature therapeutic failure. Here, a multivalent zwitterionic network modifier (ZM) is presented for upregulation of ionic exchange and bioactivity enhancement. By introducing a non-zero charged ZM into PACs, an increase in the proportion of non-bridging oxygen occurs. The network modification promotes ion channel formation, causing a multiple-fold increase in ion release and surface deposition of hydroxy-carbonate apatite (. 74%). Experiments and animal models also demonstrate the efficient remineralization ability of the ZM. Furthermore, divalent cationic interaction results in bacterial biofilm reduction (. 68%) while also influencing a shift in the biofilm species composition, which favors commensal growth. Therefore, PAC modification with ZM offers a promising solution for upregulation of bioactivity, even aiding in customization by targeting site-specific regenerative therapy in future applications.
聚链烯酸酯骨水泥(PAC)是一种用于再生硬组织治疗的很有前景的材料。PAC富含离子的玻璃成分促进生物活性相互作用以及必需离子的释放。然而,PAC的生物活性受到限制,原因如下:(i)结构上固有的阳离子网络形成剂;(ii)表面细菌生物膜的形成。这两个因素导致离子释放不足,继发感染和过早的治疗失败使情况更加复杂。在此,提出了一种多价两性离子网络改性剂(ZM),用于上调离子交换和增强生物活性。通过将带非零电荷的ZM引入PAC中,非桥连氧的比例增加。网络改性促进离子通道形成,导致离子释放增加数倍,羟基碳酸磷灰石的表面沉积(约74%)。实验和动物模型也证明了ZM具有高效的再矿化能力。此外,二价阳离子相互作用导致细菌生物膜减少(约68%),同时还影响生物膜物种组成的转变,有利于共生生长。因此,用ZM对PAC进行改性为上调生物活性提供了一个有前景的解决方案,甚至有助于在未来的应用中通过靶向特定部位的再生治疗实现定制化。